-
As a low-cost, high stable hole transport material, nickel oxide has been widely used in inverted structure perovskite solar cells in recent years. By far, the most common method of preparing nickel oxide hole transport layers is spin-coating pre-prepared nickel oxide nanoparticles (NiOx NPs), which puts forward high requirement for the particle sizes and solution processing capabilities of NiOx NPs. In this work, the sizes of NiOx NPs are precisely controlled by adjusting the pH value of the system in the synthesis process, and high-quality nickel oxide hole transport layers are then prepared. The experimental results exhibit that the NiOx NPs with sizes of 5–10 nm are obtained at a pH value in a range of 9.5–9.8. More interestingly, the obtained NiOx NPs have good dispersion stability and can achieve long-term dispersion in aqueous solution. Furthermore, the structural composition analysis of NiOx NPs shows that the pH value of the synthesis system does not have a significant effect on the material structure nor composition of the NiOx NP. Surface morphological analysis shows that the NiOx film prepared by the pH-controlled NiOx NPs is rather dense and particularly flat with small surface roughness. It is also found that the film exhibits good hole extraction capability. We also fabricate an inverted perovskite solar cell based on the NiOx film. The device structure is ITO/NiOx/CH3NH3PbI3/PC61BM/Bphen/Ag. It yields a good photovoltaic conversion efficiency (17.39%). In addition, the device is almost hysteresis-free. Our experimental results exhibit that the performance of perovskite solar cells can be effectively improved by precisely controlling the sizes of NiOx NPs through pH values. Our work is expected to facilitate the development of NiOx-based perovskite solar cells.
-
Keywords:
- NiOx /
- inverted perovskite solar cell /
- nanoparticle size
[1] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar
[2] National Renewable Energy Laboratory. Best Research-Cell Efficiencieshttps://www.nrel.gov/pv/cell-efficiency.html, 2022
[3] Stranks S D, Eperon G E, Grancini G, et al. 2013 Science 342 341Google Scholar
[4] Fei C, Li B, Zhang R, Fu H, Tian J, Cao G 2017 Adv. Eng. Mater. 7 1602017Google Scholar
[5] Wang M, Li H, Dai C, Tang J, Yin B, Wang H, Li J, Wu Y, Zhang C, Zhao Y S 2021 Sci. Chin. Chem. 64 629Google Scholar
[6] Lian J, Lu B, Niu F, Zeng P, Zhan X 2018 Small Methods 2 1800082Google Scholar
[7] Calió L, Kazim S, Grätzel M, Ahmad S 2016 Angew. Chem. Int. Ed. 55 14522Google Scholar
[8] Zhao Y, Ma F, Qu Z, Yu S, Shen T, Deng H X, Chu X, Peng X, Yuan Y, Zhang X, You J 2022 Science 377 531Google Scholar
[9] Chen J, Dong H, Zhang L, Li J, Jia F, Jiao B, Xu J, Hou X, Liu J, Wu Z 2020 J. Mater. Chem. A 8 2644Google Scholar
[10] Zhang F, Ye S, Zhang H, Zhou F, Hao Y, Cai H, Song J, Qu J 2021 Nano Energy 89 106370Google Scholar
[11] Yu Y, Shang M, Wang T, Zhou Q, Hao Y, Pang Z, Cui D, Lian G, Zhang X, Han S 2021 J. Mater. Chem. C 9 15056Google Scholar
[12] Wang Y, Duan L, Zhang M, Hameiri Z, Liu X, Bai Y, Hao X 2022 Solar RRL 6 2200234Google Scholar
[13] Zhang F, Song J, Zhang L, Niu F, Hao Y, Zeng P, Niu H, Huang J, Lian J 2016 J. Mater. Chem. A 4 8554Google Scholar
[14] Boyd C C, Shallcross R C, Moot T, Kerner R, Bertoluzzi L, Onno A, Kavadiya S, Chosy C, Wolf E J, Werner J, Raiford J A, de Paula C, Palmstrom A F, Yu Z J, Berry J J, Bent S F, Holman Z C, Luther J M, Ratcliff E L, Armstrong N R, McGehee M D 2020 Joule 4 1759Google Scholar
[15] Yin X T, Guo Y X, Xie H X, Que W X, Kong L B 2019 Solar RRL 3 1900001Google Scholar
[16] Li M J, Li H Y, Zhuang Q X, et al. 2022 Angew. Chem. Int. Ed. 61 e202206914
[17] Yin X, Chen P, Que M, Xing Y, Que W, Niu C, Shao J 2016 ACS Nano 10 3630Google Scholar
[18] Jiang F, Choy W C H, Li X, Zhang D, Cheng J 2015 Adv. Mater. 27 2930Google Scholar
[19] He Q, Yao K, Wang X, Xia X, Leng S, Li F 2017 ACS Appl. Mater. Interfaces 9 41887Google Scholar
[20] Ru P, Bi E, Zhang Y, et al. 2020 Adv. Energy Mater. 10 1903487Google Scholar
[21] Coudun C, Grillon F, Hochepied J F 2006 Colloids Surf., A 280 23Google Scholar
[22] Wang Q, Chueh C C, Zhao T, Cheng J, Eslamian M, Choy W C H, Jen A K Y 2017 ChemSusChem 10 3794Google Scholar
[23] Wang M, Sheng C X, Zhang C, Yao J 2018 J. Photonics Energy 8 032205
[24] Zhang F, Ye S, Zhang H, Zhou F, Hao Y, Cai H, Song J, Qu J 2021 Nano Energ. 89 106370
[25] Li L, Wang Y, Wang X, et al. 2022 Nat. Energy 7 708Google Scholar
[26] Seki K 2016 Appl. Phys. Lett. 109 033905Google Scholar
-
图 1 合成体系pH为(a) 9.0, (b) 9.2, (c) 9.5, (d) 9.8, (e) 10.3的NiOx纳米颗粒的TEM形貌图; (f) TEM图粒径统计; 纳米粒度仪测得的NiOx纳米颗粒; (g) 粒径分布; (h) 平均粒径
Figure 1. TEM images of NiOx nanoparticles prepared at pH of (a) 9.0, (b) 9.2, (c) 9.5, (d) 9.8 and (e) 10.3; (f) particle size statistics for TEM image; (g) particle size distributions and (h) average particle size of NiOx nanoparticles measured by nanoparticle size analyzer
表 1 基于不同NiOx薄膜的钙钛矿太阳电池的光伏参数(每组10个器件)
Table 1. Photovoltaic parameters of perovskite solar cells based on different NiOx films averaged over 10 cells.
pH Jsc/(mA·cm–2) Voc/V FF/% PCEave/% PCEmax/% 9.2 17.99 ± 1.14 1.006 ± 0.024 69.89 ± 4.43 12.62 ± 0.65 13.76 9.5 19.72 ± 0.57 1.064 ± 0.006 79.02 ± 0.96 16.58 ± 0.49 17.39 9.8 19.39 ± 0.51 1.065 ± 0.005 79.86 ± 0.46 16.48 ± 0.45 17.17 10.3 19.05 ± 0.44 1.058 ± 0.004 77.56 ± 0.84 15.62 ± 0.41 16.49 -
[1] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar
[2] National Renewable Energy Laboratory. Best Research-Cell Efficiencieshttps://www.nrel.gov/pv/cell-efficiency.html, 2022
[3] Stranks S D, Eperon G E, Grancini G, et al. 2013 Science 342 341Google Scholar
[4] Fei C, Li B, Zhang R, Fu H, Tian J, Cao G 2017 Adv. Eng. Mater. 7 1602017Google Scholar
[5] Wang M, Li H, Dai C, Tang J, Yin B, Wang H, Li J, Wu Y, Zhang C, Zhao Y S 2021 Sci. Chin. Chem. 64 629Google Scholar
[6] Lian J, Lu B, Niu F, Zeng P, Zhan X 2018 Small Methods 2 1800082Google Scholar
[7] Calió L, Kazim S, Grätzel M, Ahmad S 2016 Angew. Chem. Int. Ed. 55 14522Google Scholar
[8] Zhao Y, Ma F, Qu Z, Yu S, Shen T, Deng H X, Chu X, Peng X, Yuan Y, Zhang X, You J 2022 Science 377 531Google Scholar
[9] Chen J, Dong H, Zhang L, Li J, Jia F, Jiao B, Xu J, Hou X, Liu J, Wu Z 2020 J. Mater. Chem. A 8 2644Google Scholar
[10] Zhang F, Ye S, Zhang H, Zhou F, Hao Y, Cai H, Song J, Qu J 2021 Nano Energy 89 106370Google Scholar
[11] Yu Y, Shang M, Wang T, Zhou Q, Hao Y, Pang Z, Cui D, Lian G, Zhang X, Han S 2021 J. Mater. Chem. C 9 15056Google Scholar
[12] Wang Y, Duan L, Zhang M, Hameiri Z, Liu X, Bai Y, Hao X 2022 Solar RRL 6 2200234Google Scholar
[13] Zhang F, Song J, Zhang L, Niu F, Hao Y, Zeng P, Niu H, Huang J, Lian J 2016 J. Mater. Chem. A 4 8554Google Scholar
[14] Boyd C C, Shallcross R C, Moot T, Kerner R, Bertoluzzi L, Onno A, Kavadiya S, Chosy C, Wolf E J, Werner J, Raiford J A, de Paula C, Palmstrom A F, Yu Z J, Berry J J, Bent S F, Holman Z C, Luther J M, Ratcliff E L, Armstrong N R, McGehee M D 2020 Joule 4 1759Google Scholar
[15] Yin X T, Guo Y X, Xie H X, Que W X, Kong L B 2019 Solar RRL 3 1900001Google Scholar
[16] Li M J, Li H Y, Zhuang Q X, et al. 2022 Angew. Chem. Int. Ed. 61 e202206914
[17] Yin X, Chen P, Que M, Xing Y, Que W, Niu C, Shao J 2016 ACS Nano 10 3630Google Scholar
[18] Jiang F, Choy W C H, Li X, Zhang D, Cheng J 2015 Adv. Mater. 27 2930Google Scholar
[19] He Q, Yao K, Wang X, Xia X, Leng S, Li F 2017 ACS Appl. Mater. Interfaces 9 41887Google Scholar
[20] Ru P, Bi E, Zhang Y, et al. 2020 Adv. Energy Mater. 10 1903487Google Scholar
[21] Coudun C, Grillon F, Hochepied J F 2006 Colloids Surf., A 280 23Google Scholar
[22] Wang Q, Chueh C C, Zhao T, Cheng J, Eslamian M, Choy W C H, Jen A K Y 2017 ChemSusChem 10 3794Google Scholar
[23] Wang M, Sheng C X, Zhang C, Yao J 2018 J. Photonics Energy 8 032205
[24] Zhang F, Ye S, Zhang H, Zhou F, Hao Y, Cai H, Song J, Qu J 2021 Nano Energ. 89 106370
[25] Li L, Wang Y, Wang X, et al. 2022 Nat. Energy 7 708Google Scholar
[26] Seki K 2016 Appl. Phys. Lett. 109 033905Google Scholar
Catalog
Metrics
- Abstract views: 4533
- PDF Downloads: 65
- Cited By: 0