搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机器学习的菱形穿孔石墨烯负泊松比效应预测与优化

张孙成 韩同伟 王如盟 杨艳陶 张小燕

引用本文:
Citation:

基于机器学习的菱形穿孔石墨烯负泊松比效应预测与优化

张孙成, 韩同伟, 王如盟, 杨艳陶, 张小燕

Prediction and optimization of negative Poisson's ratio in rhombic perforated graphene using machine learning

Zhang Sun-Cheng, Han Tong-Wei, Wang Ru-Meng, Yang Yan-Tao, Zhang Xiao-Yan
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 通过结构设计调控石墨烯的性能已引起广泛关注。然而,结构设计几何参数与性能之间存在复杂的非线性关系,如何准确预测石墨烯性能参数加快结构设计仍需进一步深入探索。本文通过引入周期性菱形穿孔缺陷有效地实现了负泊松比石墨烯的结构设计,分析了负泊松比效应的产生机制,并基于反向传播神经网络(BPNN)构建了一种数据驱动的机器学习模型,可实现高效预测并设计具有负泊松比的穿孔石墨烯结构。通过分子动力学模拟构建菱形穿孔石墨烯结构的泊松比数据集,采用优化后的BPNN模型对泊松比进行预测分析,研究发现,穿孔间距比(IS)对菱形穿孔石墨烯结构泊松比的影响最显著,而穿孔纵横比(AR)与晶胞尺寸(L)的影响则相对较弱。本文还研究了不同穿孔几何参数对菱形穿孔石墨烯负泊松比效应的影响规律,减小IS和增大AR能够增强石墨烯结构的负泊松比效应。机器学习模型的预测结果与分子动力学模拟结果高度吻合,验证了机器学习方法在石墨烯泊松比预测中的有效性和可靠性。本研究通过引入菱形穿孔缺陷,结合机器学习技术,实现对石墨烯负泊松比效应的高效预测与优化,为其在智能材料和柔性电子中的应用提供理论支持。
    Tuning graphene's properties through structural design has garnered significant attention. However, the complex nonlinear relationship between geometric parameters of structural design and performance necessitates further exploration to accurately predict the performance of graphene and accelerate its structural design optimization. This study introduces periodic rhombic perforations to effectively achieve the structural design of graphene with negative Poisson's ratio (NPR). The mechanisms underlying the NPR effect are analyzed, and a data-driven machine learning model based on a backpropagation neural network (BPNN) is developed to efficiently predict and design perforated graphene structures exhibiting NPR. By constructing a Poisson's ratio dataset for rhombic perforated graphene structures through molecular dynamics simulations and employing an optimized BPNN model for predictive analysis, we found that the perforation spacing ratio (IS) has the most significant effect on the Poisson’s ratio of rhombic perforated graphene, while the perforation aspect ratio (AR) and unit cell size (L) have relatively weaker impacts. The study further investigates the impact of various perforation geometric parameters on the NPR behavior of graphene. It was found that decreasing IS and increasing AR can enhance the negative Poisson's ratio effect. The machine learning predictions closely align with molecular dynamics simulation results, demonstrating the effectiveness and reliability of this approach for Poisson's ratio prediction. By integrating rhombic perforation design with machine learning techniques, this research provides an efficient framework for optimizing the NPR effect in graphene, offering theoretical support for its application in smart materials and flexible electronics.
  • [1]

    Lee C, Wei X D, Kysar J W and Hone J 2008 Science 321 385

    [2]

    Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666

    [4]

    Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902

    [5]

    Jang H, Park Y J, Chen X, Das T, Kim M S and Ahn J H 2016 Adv. Mater. 28 4184

    [6]

    Huang C and Chen L 2016 Adv. Mater. 28 8079

    [7]

    Grima J N, Winczewski S, Mizzi L, Grech M C, Cauchi R, Gatt R, Attard D, Wojciechowski K W and Rybicki J 2015 Adv. Mater. 27 1455

    [8]

    Zhai Z R, Wu L L and Jiang H Q 2021 Appl. Phys. Rev. 8 041319

    [9]

    Yu Y, Yin Y Q, Bai R Y, Hu Y Z, Li B, Wang M Y and Chen G M 2023 Appl. Phys. Lett. 123 011702

    [10]

    Sun R J, Zhang B, Yang L, Zhang W J, Farrow I, Scarpa F and Rossiter J 2018 Appl. Phys. Lett. 112 251904

    [11]

    Han D X, Chen S H, Zhao L, Tong X and Chan K C 2022 AIP Adv. 12 035305

    [12]

    Lee J H, Singer J P and Thomas E L 2012 Adv. Mater. 24 4782

    [13]

    Grima J N, Manicaro E and Attard D 2011 Proc. R. Soc. A: Math. Phys. Eng. Sci. 467 439

    [14]

    Han T W, Scarpa F and Allan N L 2017 Thin Solid Films 632 35

    [15]

    Ho V H, Ho D T, Kwon S Y and Kim S Y 2016 Phys. Status Solidi B Basic Res. 253 1303

    [16]

    Cai K, Luo J, Ling Y R, Wan J and Qin Q H 2016 Sci. Rep. 6 35157

    [17]

    Shi P, Chen Y, Feng J and Sareh P 2024 Phys. Rev. E 109 035002

    [18]

    Shi P, Chen Y, Wei Y, Feng J, Guo T, Tu Y M and Sareh P 2023 Phys. Rev. B 108 134105

    [19]

    Wan J, Jiang J W and Park H S 2017 Nanoscale 9 4007

    [20]

    Jiang J W, Chang T C and Guo X M 2016 Nanoscale 8 15948

    [21]

    Hanakata P Z, Cubuk E D, Campbell D K and Park H S 2018 Physi. Rev. Lett. 121 255304

    [22]

    Wan J, Jiang J W and Park H S 2020 Carbon 157 262

    [23]

    Rumelhart D E, Hinton G E and Williams R J 1986 Nature 323 533

    [24]

    Slann A, White W, Scarpa F, Boba K and Farrow I 2015 Phys. Status Solidi B Basic Res. 252 1533

    [25]

    Grima J N, Mizzi L, Azzopardi K M and Gatt R 2016 Adv. Mater. 28 385

    [26]

    Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, Veld P J I, Kohlmeyer A, Moore S G, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C and Plimpton S J 2022 Comput. Phys. Comm. 271 10817

    [27]

    Dhaliwal G, Nair P B and Singh C V 2019 Carbon 142 300

    [28]

    Stuart S J, Tutein A B and Harrison J A 2000 J. Chem. Phys. 112 6472

    [29]

    Qin H S, Sun Y, Liu J Z and Liu Y L 2016 Carbon 108 204

    [30]

    Qian C, McLean B, Hedman D and Ding F 2021 APL Mater. 9 061102

    [31]

    Swope W C, Andersen H C, Berens P H and Wilson K R 1982 J. Chem. Phys. 76 637

    [32]

    Hoover W G 1985 Phys. Rev. A Gen. Phys. 31 1695

    [33]

    Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M and Duchesnay É 2011 J. Mach. Learn. Res. 11 2825

    [34]

    Jones D R, Schonlau M and Welch W J 1998 J. Glob. Optim. 13 455

    [35]

    Lundberg S M and Lee S-I 2017 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, 2017 pp 4768 - 4777

  • [1] 王鹏, 麦麦提尼亚孜·麦麦提阿卜杜拉. 机器学习的量子动力学.  , doi: 10.7498/aps.74.20240999
    [2] 陈晶晶, 赵洪坡, 王葵, 占慧敏, 罗泽宇. SiC基底覆多层石墨烯力学强化性能分子动力学模拟.  , doi: 10.7498/aps.73.20232031
    [3] 欧阳鑫健, 张岩星, 王之龙, 张锋, 陈韦嘉, 庄园, 揭晓, 刘来君, 王大威. 面向铁电相变的机器学习: 基于图卷积神经网络的分子动力学模拟.  , doi: 10.7498/aps.73.20240156
    [4] 余欣秀, 李多生, 叶寅, 朗文昌, 刘俊红, 陈劲松, 于爽爽. 硬质合金表面镍过渡层对碳原子沉积与石墨烯生长影响的分子动力学模拟.  , doi: 10.7498/aps.73.20241170
    [5] 罗方芳, 蔡志涛, 黄艳东. 蛋白质pKa预测模型研究进展.  , doi: 10.7498/aps.72.20231356
    [6] 罗启睿, 沈一凡, 罗孟波. 高分子塌缩相变和临界吸附相变的计算机模拟和机器学习.  , doi: 10.7498/aps.72.20231058
    [7] 管星悦, 黄恒焱, 彭华祺, 刘彦航, 李文飞, 王炜. 生物分子模拟中的机器学习方法.  , doi: 10.7498/aps.72.20231624
    [8] 丁业章, 叶寅, 李多生, 徐锋, 朗文昌, 刘俊红, 温鑫. WC-Co硬质合金表面石墨烯沉积生长分子动力学仿真研究.  , doi: 10.7498/aps.72.20221332
    [9] 明知非, 宋海洋, 安敏荣. 基于分子动力学模拟的石墨烯镁基复合材料力学行为.  , doi: 10.7498/aps.71.20211753
    [10] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟.  , doi: 10.7498/aps.71.20212309
    [11] 陈善登, 白清顺, 窦昱昊, 郭万民, 王洪飞, 杜云龙. 金刚石晶界辅助石墨烯沉积的成核机理仿真.  , doi: 10.7498/aps.71.20211981
    [12] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 张婷婷, 刘洋, 胡振洋, 唐小洁. 基于石墨烯电极的蒽醌分子器件开关特性.  , doi: 10.7498/aps.70.20201095
    [13] 王延庆, 李佳豪, 彭勇, 赵又红, 白利春. 界面电流介入时石墨烯的载流摩擦行为.  , doi: 10.7498/aps.70.20210892
    [14] 白清顺, 窦昱昊, 何欣, 张爱民, 郭永博. 基于分子动力学模拟的铜晶面石墨烯沉积生长机理.  , doi: 10.7498/aps.69.20200781
    [15] 史超, 林晨森, 陈硕, 朱军. 石墨烯表面的特征水分子排布及其湿润透明特性的分子动力学模拟.  , doi: 10.7498/aps.68.20182307
    [16] 张忠强, 贾毓瑕, 郭新峰, 葛道晗, 程广贵, 丁建宁. 凹槽铜基底表面与单层石墨烯的相互作用特性研究.  , doi: 10.7498/aps.67.20172249
    [17] 韩同伟, 李攀攀. 石墨烯剪纸的大变形拉伸力学行为研究.  , doi: 10.7498/aps.66.066201
    [18] 徐志成, 钟伟荣. C60轰击石墨烯的瞬间动力学.  , doi: 10.7498/aps.63.083401
    [19] 常旭. 多层石墨烯的表面起伏的分子动力学模拟.  , doi: 10.7498/aps.63.086102
    [20] 韩同伟, 贺鹏飞. 石墨烯弛豫性能的分子动力学模拟.  , doi: 10.7498/aps.59.3408
计量
  • 文章访问数:  86
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 上网日期:  2025-03-04

/

返回文章
返回
Baidu
map