-
Using non-equilibrium molecular dynamics method, we study the transient kinetics of graphene bombarded by fullerene through controlling the temperature and velocity. Our results show that fullerene (C60) with low velocity cannot pass through graphene at any temperature. However C60 with high velocity can pass through graphene at any temperature. Between low velocity and high velocity, we find that the probability of C60 passing through graphene increases with temperature, the reason is that the probability of destroying carbon-carbon bond at high temperature is higher than at low temperature. In this paper, we also discuss the potential applications in the surface cleaning of graphene and the production of nanopore.
[1] Shen C, Hu Y T, Zhou S, Ma X L, Li H 2013 Acta Phys. Sin. 62 038801 (in Chinese) [沈超, 胡雅婷, 周硕, 马晓兰, 李华 2013 62 038801]
[2] Yu H L, Zhu J Q, Cao W X, Han J C 2013 Acta Phys. Sin. 62 028201 (in Chinese) [于海玲, 朱嘉琦, 曹文鑫, 韩杰才 2013 62 028201]
[3] Man Z Y, Pan Z Y, Ho Y K 1995 Phys. Lett. A 209 53
[4] Mowrey R C, Brenner D W, Dunlap B I, MintmirejW, White C T 1991 J. Phys. Chem. 95 7318
[5] Li F, Xia Y Y, Zhao M W, Liu X D, Huang B D, Tan Z Y, Ji Y J 2004 Chin. Phys. Lett. 21 1004
[6] Ma Y C, Yue Y, Zhao M W, Ying M J, Liu X D 2001 J. Chem. Phys. 115 8152
[7] Inui N, Mochiji K, Moritani K 2008 Nanotechnology 19 505501
[8] Beck R D, John St P, Alvarez M M, Diederich F, Whetten R L 1991 J. Phys. Chem. 95 8402
[9] Kawai T, Okada S, Miyamoto Y, Oshiyama A 2005 Phys. Rev. B 72 035428
[10] Ohno K, Maruyama Y, Esfarjani K, Kavazoe Y 1996 Phys. Rev. Lett. 76 3590
[11] Wang X Q, Lee J D 2012 J. Nanomech. Micromech. 2 2153
[12] Tersoff J 1989 Phys. Rev. B 39 5566
[13] Raffii-Tabar H 2008 Computational Physics of Carbon Nanotubes (New York: Cambrige University Press)pp61-70
-
[1] Shen C, Hu Y T, Zhou S, Ma X L, Li H 2013 Acta Phys. Sin. 62 038801 (in Chinese) [沈超, 胡雅婷, 周硕, 马晓兰, 李华 2013 62 038801]
[2] Yu H L, Zhu J Q, Cao W X, Han J C 2013 Acta Phys. Sin. 62 028201 (in Chinese) [于海玲, 朱嘉琦, 曹文鑫, 韩杰才 2013 62 028201]
[3] Man Z Y, Pan Z Y, Ho Y K 1995 Phys. Lett. A 209 53
[4] Mowrey R C, Brenner D W, Dunlap B I, MintmirejW, White C T 1991 J. Phys. Chem. 95 7318
[5] Li F, Xia Y Y, Zhao M W, Liu X D, Huang B D, Tan Z Y, Ji Y J 2004 Chin. Phys. Lett. 21 1004
[6] Ma Y C, Yue Y, Zhao M W, Ying M J, Liu X D 2001 J. Chem. Phys. 115 8152
[7] Inui N, Mochiji K, Moritani K 2008 Nanotechnology 19 505501
[8] Beck R D, John St P, Alvarez M M, Diederich F, Whetten R L 1991 J. Phys. Chem. 95 8402
[9] Kawai T, Okada S, Miyamoto Y, Oshiyama A 2005 Phys. Rev. B 72 035428
[10] Ohno K, Maruyama Y, Esfarjani K, Kavazoe Y 1996 Phys. Rev. Lett. 76 3590
[11] Wang X Q, Lee J D 2012 J. Nanomech. Micromech. 2 2153
[12] Tersoff J 1989 Phys. Rev. B 39 5566
[13] Raffii-Tabar H 2008 Computational Physics of Carbon Nanotubes (New York: Cambrige University Press)pp61-70
Catalog
Metrics
- Abstract views: 7190
- PDF Downloads: 434
- Cited By: 0