搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金刚石晶界辅助石墨烯沉积的成核机理仿真

陈善登 白清顺 窦昱昊 郭万民 王洪飞 杜云龙

引用本文:
Citation:

金刚石晶界辅助石墨烯沉积的成核机理仿真

陈善登, 白清顺, 窦昱昊, 郭万民, 王洪飞, 杜云龙

Simulation research on nucleation mechanism of graphene deposition assisted by diamond grain boundary

Chen Shan-Deng, Bai Qing-Shun, Dou Yu-Hao, Guo Wan-Min, Wang Hong-Fei, Du Yun-Long
PDF
HTML
导出引用
  • 石墨烯在新基材上的生长一直是被关注的焦点, 而在以金刚石多晶体为基底沉积石墨烯的成核机理方面的研究对石墨烯大规模的制备具有重要的现实意义. 本文采用反应性分子动力学仿真技术, 模拟了镍催化双晶金刚石辅助石墨烯沉积生长的过程, 研究了金刚石晶界对石墨烯成核生长过程中动力学行为的影响. 研究结果表明晶界碳原子可作为补充碳源扩散至镍自由表面, 参与石墨烯的成核生长. 论文探究了温度对碳原子扩散行为的影响, 发现当沉积温度为1700 K时, 利于晶界碳原子在镍晶格中扩散, 有效提高石墨烯成核密度; 探究了沉积碳源流量对石墨烯表面质量影响, 发现1700 K下采用较低的碳沉积速率1 ps–1有利于获得最佳的石墨烯表面质量. 本文的研究结果不仅为金刚石晶界辅助石墨烯沉积生长提供了有效的理论模型和机理解析, 还揭示了沉积温度和沉积碳源流量对生长石墨烯表面质量的影响规律, 为石墨烯/金刚石多晶体异质结构在超精密制造和微电子领域的实际应用提供理论基础.
    The growth of high-quality graphene is always a focused issue in the field of two-dimensional materials, and the growth of graphene on brand new substrates has received considerable attention from scholars especially. The research on the nucleation mechanism of graphene deposited on a polycrystalline diamond substrate is of significance in the large-scale preparation of graphene in practice. Here in this work, the direct growth without transfer process of graphene on a diamond substrate is used to obtain the high-quality graphene. The reactive molecular dynamics simulation technology is adopted to imitate the process of graphene deposition and growth on bi-crystal diamond assisted by nickel catalyzed at an atomic level. The effect of the bi-crystal diamond grain boundary on the dynamic behavior of graphene nucleation and growth process is studied. The results demonstrate that the grain boundary carbon atoms can be used as a supplementary carbon source to diffuse into the nickel free surface and participate in the nucleation and growth of graphene. Furthermore, the effect of temperature on the diffusion behavior of carbon atoms is explored, finding that high temperature facilitates the dissociation of atoms in the grain boundary. When the deposition temperature equals 1700 K, it is most conducive to the diffusion of grain boundary carbon atoms in the nickel lattice, which effectively enhances the nucleation density of graphene. Besides, the effect of the deposition carbon source flow rate on the surface quality of graphene is explored, finding that the high-quality graphene surface can be obtained by adopting a lower carbon deposit rate of 1 ps–1 at 1700 K. In brief, the research results obtained not only provide an effective theoretical model and analysis of the mechanism for diamond grain boundary assisted graphene deposition and growth, but also reveal the regular pattern of influence of deposition temperature and deposition carbon source flow rate on the surface quality of synthesized graphene. The present study can lay a theoretical foundation for the fabrication and application of new functional graphene-polycrystalline diamond heterostructures in the fields of ultra-precision manufacturing and microelectronics.
      通信作者: 白清顺, qshbai@hit.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 52075129)和国家自然科学基金委员会-中国工程物理研究院联合基金 (批准号: U2030109)资助的课题
      Corresponding author: Bai Qing-Shun, qshbai@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52075129) and the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U2030109)
    [1]

    He X, Bai Q, Shen R 2018 Carbon 130 672Google Scholar

    [2]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [3]

    Zhu L, Wang J, Zhang T, Ma L, Lim C W, Ding F, Zeng X C 2010 Nano Lett. 10 494Google Scholar

    [4]

    Paolicelli G, Tripathi M, Corradini V, Candini A, Valeri S 2015 Nanotechnology 26 055703Google Scholar

    [5]

    Peng Y, Zeng X, Liu L, Cao X, Zou K, Chen R 2017 Carbon 124 541Google Scholar

    [6]

    Egberts P, Han G H, Liu X Z, Johnson A T C, Carpick R W 2014 ACS Nano 8 5010Google Scholar

    [7]

    Freitag M 2010 Phys. Status Solidi B 247 2895Google Scholar

    [8]

    He L, Wang J, Hou K, Yang S 2019 Appl. Surf. Sci. 475 389Google Scholar

    [9]

    Lui C H, Liu L, Mak K F, Flynn G W, Heinz T F 2009 Nature 462 339Google Scholar

    [10]

    Zapol P, Sternberg M, Curtiss L A, Frauenheim T, Gruen D M 2002 Phys. Rev. B 65 045403Google Scholar

    [11]

    Ueda K, Aichi S, Asano H 2016 Diam. Relat. Mater. 63 148Google Scholar

    [12]

    Berman D, Deshmukh S A, Narayanan B, Sankaranarayanan S K R S, Yan Z, Balandin A A, Zinovev A, Rosenmann D, Sumant A V 2016 Nat. Commun. 7 12099Google Scholar

    [13]

    Kanada S, Nagai M, Ito S, Matsumoto T, Ogura M, Takeuchi D, Yamasaki S, Inokuma T, Tokuda N 2017 Diam. Relat. Mater. 75 105Google Scholar

    [14]

    Barnard A S, Sternberg M 2008 J. Comput. Theor. Nanosci. 5 2089Google Scholar

    [15]

    Tokuda N, Makino T, Inokuma T, Yamsaki S, Inokuma T 2012 Jpn. J. Appl. Phys. 51 090107Google Scholar

    [16]

    Rasuli R, Mostafavi K, Davoodi J 2014 J. Appl. Phys. 115 185503Google Scholar

    [17]

    Syuhada I, Rosikhin A, Fikri A, Noor F A, Winata T 2016 API Conf. Proc. 1710 185503Google Scholar

    [18]

    Xu Z, Yan T, Liu G, Qiao G, Ding F 2015 Nanoscale 8 921Google Scholar

    [19]

    王浪, 冯伟, 杨连乔, 张建华 2014 63 176801Google Scholar

    Wang L, Feng W, Yang L Q, Zhang J H 2014 Acta Phys. Sin. 63 176801Google Scholar

    [20]

    Mueller J E, Van Duin A C T, Dasgupta S, Lorant F, Goddard W A 2001 J. Phys. Chem. A 105 9396Google Scholar

    [21]

    L Meng, Q Sun, J Wang, F Ding 2012 J. Phys. Chem. C 116 6097Google Scholar

    [22]

    Neyts E C, Van Duin A C T, Bogaerts A 2013 Nanoscale 5 7250Google Scholar

    [23]

    Mueller J E, Van Duin A C T, Goddard W A 2010 J. Phys. Chem. C 114 4939Google Scholar

    [24]

    Neyts E C, Van Duin A C T, Bogaerts A 2011 J. Am. Chem. Soc. 133 17225Google Scholar

    [25]

    Neyts E C, Shibuta Y, van Duin A C T, Bogaerts A 2010 ACS Nano 4 6665Google Scholar

    [26]

    Van Duin A C T, Strachan A, Stewman S, Zhang Q S, Xu X, Goddard W A 2003 J. Phys. Chem. A 107 3803Google Scholar

    [27]

    Tao C G, Feng H J, Zhou J, Lue L H, Lu X H 2009 Acta Phys-Chim. Sin. 25 1373Google Scholar

    [28]

    Gao J, Yuan Q, Hu H, Zhao J, Ding F 2011 J. Phys. Chem. C 115 16795Google Scholar

    [29]

    Wang L, Zhang X, Chan H L W, Yan F, Ding F 2013 J. AM. Chem. Soc. 135 4476Google Scholar

    [30]

    Reina A, Jia X, Ho J, Neizich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2008 Nano Lett. 9 30Google Scholar

    [31]

    Page A J, Ohta Y, Okamoto Y, Irle S, Morokuma K 2009 J. Phys. Chem. C 113 20198Google Scholar

  • 图 1  双晶金刚石基底仿真模型 (a)俯视图; (b)正视图

    Fig. 1.  Simulation model of bi-crystal diamond substrate: (a) Top view; (b) front view.

    图 2  金刚石晶界辅助石墨烯沉积仿真模型

    Fig. 2.  Simulation model of graphene deposition assisted by grain boundary.

    图 3  1700 K下镍催化双晶金刚石辅助石墨烯沉积生长过程的顶面原子分布 (a) 80 ps; (b) 170 ps; (c) 270 ps; (d) 380 ps

    Fig. 3.  Top atomic distribution of graphene deposition and growth on bi-crystal diamond assisted by nickel catalyzed at 1700 K: (a) 80 ps; (b) 170 ps; (c) 270 ps; (d) 380 ps.

    图 4  1700 K下镍催化双晶金刚石辅助石墨烯沉积生长过程的侧面原子分布 (a) 80 ps; (b) 170 ps; (c) 270 ps; (d) 380 ps

    Fig. 4.  Lateral atomic distribution of graphene deposition and growth on bi-crystal diamond assisted by nickel catalyzed at 1700 K: (a) 80 ps; (b) 170 ps; (c) 270 ps; (d) 380 ps.

    图 5  沉积前后模拟体系的 (a)径向分布函数, (b)价键角分布函数

    Fig. 5.  (a) RDF and (b) ADF of initial and final deposition simulation system.

    图 6  不同温度下晶界及金刚石顶部晶面裂解的 (a) 碳原子数和(b)扩散系数

    Fig. 6.  (a) The number of carbon atom and (b) diffusion coefficient of grain boundary and top of diamond at various temperatures.

    图 7  不同碳沉积速率下石墨烯的顶面生长情况 (a) 0.5 ps–1; (b) 1.0 ps–1; (c) 2.0 ps–1; (d) 3.0 ps–1; (e) 5.0 ps–1

    Fig. 7.  Top growth of graphene at various CDR: (a) 0.5 ps–1; (b) 1.0 ps–1; (c) 2.0 ps–1; (d) 3.0 ps–1; (e) 5.0 ps–1.

    图 8  不同碳沉积速率下石墨烯的侧面生长情况  (a) 0.5 ps–1; (b) 1.0 ps–1; (c) 2.0 ps–1; (d) 3.0 ps–1; (e) 5.0 ps–1

    Fig. 8.  Lateral growth of graphene at various CDR: (a) 0.5 ps–1; (b) 1.0 ps–1; (c) 2.0 ps–1; (d) 3.0 ps–1; (e) 5.0 ps–1.

    图 9  不同碳沉积速率生长石墨烯的RMS变化情况

    Fig. 9.  The change of graphene RMS with time at different CDR.

    Baidu
  • [1]

    He X, Bai Q, Shen R 2018 Carbon 130 672Google Scholar

    [2]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [3]

    Zhu L, Wang J, Zhang T, Ma L, Lim C W, Ding F, Zeng X C 2010 Nano Lett. 10 494Google Scholar

    [4]

    Paolicelli G, Tripathi M, Corradini V, Candini A, Valeri S 2015 Nanotechnology 26 055703Google Scholar

    [5]

    Peng Y, Zeng X, Liu L, Cao X, Zou K, Chen R 2017 Carbon 124 541Google Scholar

    [6]

    Egberts P, Han G H, Liu X Z, Johnson A T C, Carpick R W 2014 ACS Nano 8 5010Google Scholar

    [7]

    Freitag M 2010 Phys. Status Solidi B 247 2895Google Scholar

    [8]

    He L, Wang J, Hou K, Yang S 2019 Appl. Surf. Sci. 475 389Google Scholar

    [9]

    Lui C H, Liu L, Mak K F, Flynn G W, Heinz T F 2009 Nature 462 339Google Scholar

    [10]

    Zapol P, Sternberg M, Curtiss L A, Frauenheim T, Gruen D M 2002 Phys. Rev. B 65 045403Google Scholar

    [11]

    Ueda K, Aichi S, Asano H 2016 Diam. Relat. Mater. 63 148Google Scholar

    [12]

    Berman D, Deshmukh S A, Narayanan B, Sankaranarayanan S K R S, Yan Z, Balandin A A, Zinovev A, Rosenmann D, Sumant A V 2016 Nat. Commun. 7 12099Google Scholar

    [13]

    Kanada S, Nagai M, Ito S, Matsumoto T, Ogura M, Takeuchi D, Yamasaki S, Inokuma T, Tokuda N 2017 Diam. Relat. Mater. 75 105Google Scholar

    [14]

    Barnard A S, Sternberg M 2008 J. Comput. Theor. Nanosci. 5 2089Google Scholar

    [15]

    Tokuda N, Makino T, Inokuma T, Yamsaki S, Inokuma T 2012 Jpn. J. Appl. Phys. 51 090107Google Scholar

    [16]

    Rasuli R, Mostafavi K, Davoodi J 2014 J. Appl. Phys. 115 185503Google Scholar

    [17]

    Syuhada I, Rosikhin A, Fikri A, Noor F A, Winata T 2016 API Conf. Proc. 1710 185503Google Scholar

    [18]

    Xu Z, Yan T, Liu G, Qiao G, Ding F 2015 Nanoscale 8 921Google Scholar

    [19]

    王浪, 冯伟, 杨连乔, 张建华 2014 63 176801Google Scholar

    Wang L, Feng W, Yang L Q, Zhang J H 2014 Acta Phys. Sin. 63 176801Google Scholar

    [20]

    Mueller J E, Van Duin A C T, Dasgupta S, Lorant F, Goddard W A 2001 J. Phys. Chem. A 105 9396Google Scholar

    [21]

    L Meng, Q Sun, J Wang, F Ding 2012 J. Phys. Chem. C 116 6097Google Scholar

    [22]

    Neyts E C, Van Duin A C T, Bogaerts A 2013 Nanoscale 5 7250Google Scholar

    [23]

    Mueller J E, Van Duin A C T, Goddard W A 2010 J. Phys. Chem. C 114 4939Google Scholar

    [24]

    Neyts E C, Van Duin A C T, Bogaerts A 2011 J. Am. Chem. Soc. 133 17225Google Scholar

    [25]

    Neyts E C, Shibuta Y, van Duin A C T, Bogaerts A 2010 ACS Nano 4 6665Google Scholar

    [26]

    Van Duin A C T, Strachan A, Stewman S, Zhang Q S, Xu X, Goddard W A 2003 J. Phys. Chem. A 107 3803Google Scholar

    [27]

    Tao C G, Feng H J, Zhou J, Lue L H, Lu X H 2009 Acta Phys-Chim. Sin. 25 1373Google Scholar

    [28]

    Gao J, Yuan Q, Hu H, Zhao J, Ding F 2011 J. Phys. Chem. C 115 16795Google Scholar

    [29]

    Wang L, Zhang X, Chan H L W, Yan F, Ding F 2013 J. AM. Chem. Soc. 135 4476Google Scholar

    [30]

    Reina A, Jia X, Ho J, Neizich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2008 Nano Lett. 9 30Google Scholar

    [31]

    Page A J, Ohta Y, Okamoto Y, Irle S, Morokuma K 2009 J. Phys. Chem. C 113 20198Google Scholar

  • [1] 陈晶晶, 赵洪坡, 王葵, 占慧敏, 罗泽宇. SiC基底覆多层石墨烯力学强化性能分子动力学模拟.  , 2024, 73(10): 109601. doi: 10.7498/aps.73.20232031
    [2] 余欣秀, 李多生, 叶寅, 朗文昌, 刘俊红, 陈劲松, 于爽爽. 硬质合金表面镍过渡层对碳原子沉积与石墨烯生长影响的分子动力学模拟.  , 2024, 73(23): 238701. doi: 10.7498/aps.73.20241170
    [3] 丁业章, 叶寅, 李多生, 徐锋, 朗文昌, 刘俊红, 温鑫. WC-Co硬质合金表面石墨烯沉积生长分子动力学仿真研究.  , 2023, 72(6): 068703. doi: 10.7498/aps.72.20221332
    [4] 明知非, 宋海洋, 安敏荣. 基于分子动力学模拟的石墨烯镁基复合材料力学行为.  , 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [5] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟.  , 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [6] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 张婷婷, 刘洋, 胡振洋, 唐小洁. 基于石墨烯电极的蒽醌分子器件开关特性.  , 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [7] 王延庆, 李佳豪, 彭勇, 赵又红, 白利春. 界面电流介入时石墨烯的载流摩擦行为.  , 2021, 70(20): 206802. doi: 10.7498/aps.70.20210892
    [8] 白清顺, 窦昱昊, 何欣, 张爱民, 郭永博. 基于分子动力学模拟的铜晶面石墨烯沉积生长机理.  , 2020, 69(22): 226102. doi: 10.7498/aps.69.20200781
    [9] 史超, 林晨森, 陈硕, 朱军. 石墨烯表面的特征水分子排布及其湿润透明特性的分子动力学模拟.  , 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [10] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移.  , 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [11] 张忠强, 贾毓瑕, 郭新峰, 葛道晗, 程广贵, 丁建宁. 凹槽铜基底表面与单层石墨烯的相互作用特性研究.  , 2018, 67(3): 033101. doi: 10.7498/aps.67.20172249
    [12] 韩同伟, 李攀攀. 石墨烯剪纸的大变形拉伸力学行为研究.  , 2017, 66(6): 066201. doi: 10.7498/aps.66.066201
    [13] 王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强. 化学气相沉积法制备的石墨烯晶畴的氢气刻蚀.  , 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [14] 徐志成, 钟伟荣. C60轰击石墨烯的瞬间动力学.  , 2014, 63(8): 083401. doi: 10.7498/aps.63.083401
    [15] 常旭. 多层石墨烯的表面起伏的分子动力学模拟.  , 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [16] 兰惠清, 徐藏. 掺硅类金刚石薄膜摩擦过程的分子动力学模拟.  , 2012, 61(13): 133101. doi: 10.7498/aps.61.133101
    [17] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究.  , 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [18] 韩同伟, 贺鹏飞. 石墨烯弛豫性能的分子动力学模拟.  , 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
    [19] 胡晓君, 戴永兵, 何贤昶, 沈荷生, 李荣斌. 空位在金刚石近(001)表面扩散的分子动力学模拟.  , 2002, 51(6): 1388-1392. doi: 10.7498/aps.51.1388
    [20] 戴永兵, 沈荷生, 张志明, 何贤昶, 胡晓君, 孙方宏, 莘海维. 金刚石/硅(001)异质界面的分子动力学模拟研究.  , 2001, 50(2): 244-250. doi: 10.7498/aps.50.244
计量
  • 文章访问数:  4238
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-25
  • 修回日期:  2021-12-22
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-20

/

返回文章
返回
Baidu
map