搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯剪纸的大变形拉伸力学行为研究

韩同伟 李攀攀

引用本文:
Citation:

石墨烯剪纸的大变形拉伸力学行为研究

韩同伟, 李攀攀

Investigation on the large tensile deformation and mechanical behaviors of graphene kirigami

Han Tong-Wei, Li Pan-Pan
PDF
导出引用
  • 将传统宏观剪纸技术应用于纳观尺度,通过引入圆角矩形切口图案构建了石墨烯剪纸.采用分子动力学方法研究了单层与双层石墨烯剪纸的大变形拉伸力学行为和变形破坏机制,并系统地研究了关于切口图案的3个无量纲几何参数对单层石墨烯剪纸的力学性能和变形破坏机制的影响规律.研究发现,通过引入规则切口,可以有效地大幅度提高石墨烯的延展性,其断裂应变可达到完美石墨烯的56倍.通过控制3个几何参数,可以有效地调控石墨烯的延展性和力学行为.研究结果表明,古老的剪纸技术为提高二维纳米材料延展性、实现光电纳米器件可延展柔性化提供了一种新的解决方案.
    One of the main challenges in developing future stretchable nanoelectronics is the mismatch between the hard inorganic semiconductor materials and the ductility requirements in the applications. This paper shows how the kirigami architectural approach, inspired by the ancient Japanese art of cutting and folding paper applied on macroscale, might be an effective strategy to overcome this mismatch on nanoscale. In this work, the tensile large deformation and mechanical behaviors of armchair and zigzag graphene kirigami with rectangles and half circles cutting patterns are investigated based on classical molecular dynamics simulations. The effects of three non-dimensional geometric parameters that control the cutting patterns on the mechanics and ductility of graphene kirigami are also studied systematically. The results indicate that the enhancement in fracture strain can reach more than five times the fracture strain of pristine graphene. The defined three parameters can be adjusted to tailor or manipulate the ductility and mechanical behaviors of graphene. These results suggest that the kirigami architectural approach may be a suitable technique to design super-ductile two-dimensional nanomaterials and potentially expand their applications to other strain-engineered nanodevices and nanoelectronics.
      通信作者: 韩同伟, twhan@ujs.edu.cn
    • 基金项目: 江苏省自然科学基金(批准号:BK2011490)资助的课题.
      Corresponding author: Han Tong-Wei, twhan@ujs.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2011490).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [3]

    Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192

    [4]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385

    [5]

    Zhao H, Min K, Aluru N R 2009 Nano Lett. 9 3012

    [6]

    Pei Q X, Zhang Y W, Shenoy V B 2010 Carbon 48 898

    [7]

    Khang D Y, Jiang H Q, Huang Y, Rogers J A 2006 Science 311 208

    [8]

    Kim D H, Ahn J H, Choi W M, Kim H S, Kim T H, Song J Z, Huang Y G Y, Liu Z J, Lu C, Rogers J A 2008 Science 320 507

    [9]

    Kim D H, Song J Z, Choi W M, Kim H S, Kim R H, Liu Z J, Huang Y Y, Hwang K C, Zhang Y W, Rogers J A 2008 Proc. Natl. Acad. Sci. USA 105 18675

    [10]

    Xu S, Zhang Y H, Cho J, Lee J, Huang X, Jia L, Fan J A, Su Y W, Su J, Zhang H G, Cheng H Y, Lu B W, Yu C J, Chuang C, Kim T I, Song T, Shigeta K, Kang S, Dagdeviren C, Petrov I, Braun P V, Huang Y G, Paik U, Rogers J A 2013 Nat. Commun. 4 1543

    [11]

    Song Z M, Ma T, Tang R, Cheng Q, Wang X, Krishnaraju D, Panat R, Chan C K, Yu H Y, Jiang H Q 2014 Nat. Commun. 5 3140

    [12]

    Lamoureux A, Lee K, Shlian M, Forrest S R, Shtein M 2015 Nat. Commun. 6 8092

    [13]

    Blees M K, Barnard A W, Rose P A, Roberts S P, McGill K L, Huang P Y, Ruyack A R, Kevek J W, Kobrin B, Muller D A, McEuen P L 2015 Nature 524 204

    [14]

    Hanakata P Z, Qi Z A, Campbell D K, Park H S 2016 Nanoscale 8 458

    [15]

    Qi Z N, Campbell D K, Park H S 2014 Phys. Rev. B 90 245437

    [16]

    Lin J H, Fang W J, Zhou W, Lupini A R, Idrobo J C, Kong J, Pennycook S J, Pantelides S T 2013 Nano Lett. 13 3262

    [17]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys.-Condens. Matter 14 783

    [18]

    Brenner D W 1990 Phys. Rev. B 42 9458

    [19]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472

    [20]

    Grantab R, Shenoy V B, Ruoff R S 2010 Science 330 946

    [21]

    Zhang P, Ma L L, Fan F F, Zeng Z, Peng C, Loya P E, Liu Z, Gong Y J, Zhang J N, Zhang X X, Ajayan P M, Zhu T, Lou J 2014 Nat. Commun. 5 3782

    [22]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [23]

    Nose S 1984 Mol. Phys. 52 255

    [24]

    Swope W C, Andersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637

    [25]

    Subramaniyan A K, Sun C T 2008 Int. J. Solids. Struct. 45 4340

    [26]

    Zhao Y P 2014 Nano and Mesoscopic Mechanics (Beijing: Science Press) p14 (in Chinese) [赵亚溥 2014 纳米与介观力学(北京:科学出版社) 第14页]

    [27]

    Zhang Y Y, Wang C M, Cheng Y, Xiang Y 2011 Carbon 49 4511

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [3]

    Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192

    [4]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385

    [5]

    Zhao H, Min K, Aluru N R 2009 Nano Lett. 9 3012

    [6]

    Pei Q X, Zhang Y W, Shenoy V B 2010 Carbon 48 898

    [7]

    Khang D Y, Jiang H Q, Huang Y, Rogers J A 2006 Science 311 208

    [8]

    Kim D H, Ahn J H, Choi W M, Kim H S, Kim T H, Song J Z, Huang Y G Y, Liu Z J, Lu C, Rogers J A 2008 Science 320 507

    [9]

    Kim D H, Song J Z, Choi W M, Kim H S, Kim R H, Liu Z J, Huang Y Y, Hwang K C, Zhang Y W, Rogers J A 2008 Proc. Natl. Acad. Sci. USA 105 18675

    [10]

    Xu S, Zhang Y H, Cho J, Lee J, Huang X, Jia L, Fan J A, Su Y W, Su J, Zhang H G, Cheng H Y, Lu B W, Yu C J, Chuang C, Kim T I, Song T, Shigeta K, Kang S, Dagdeviren C, Petrov I, Braun P V, Huang Y G, Paik U, Rogers J A 2013 Nat. Commun. 4 1543

    [11]

    Song Z M, Ma T, Tang R, Cheng Q, Wang X, Krishnaraju D, Panat R, Chan C K, Yu H Y, Jiang H Q 2014 Nat. Commun. 5 3140

    [12]

    Lamoureux A, Lee K, Shlian M, Forrest S R, Shtein M 2015 Nat. Commun. 6 8092

    [13]

    Blees M K, Barnard A W, Rose P A, Roberts S P, McGill K L, Huang P Y, Ruyack A R, Kevek J W, Kobrin B, Muller D A, McEuen P L 2015 Nature 524 204

    [14]

    Hanakata P Z, Qi Z A, Campbell D K, Park H S 2016 Nanoscale 8 458

    [15]

    Qi Z N, Campbell D K, Park H S 2014 Phys. Rev. B 90 245437

    [16]

    Lin J H, Fang W J, Zhou W, Lupini A R, Idrobo J C, Kong J, Pennycook S J, Pantelides S T 2013 Nano Lett. 13 3262

    [17]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys.-Condens. Matter 14 783

    [18]

    Brenner D W 1990 Phys. Rev. B 42 9458

    [19]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472

    [20]

    Grantab R, Shenoy V B, Ruoff R S 2010 Science 330 946

    [21]

    Zhang P, Ma L L, Fan F F, Zeng Z, Peng C, Loya P E, Liu Z, Gong Y J, Zhang J N, Zhang X X, Ajayan P M, Zhu T, Lou J 2014 Nat. Commun. 5 3782

    [22]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [23]

    Nose S 1984 Mol. Phys. 52 255

    [24]

    Swope W C, Andersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637

    [25]

    Subramaniyan A K, Sun C T 2008 Int. J. Solids. Struct. 45 4340

    [26]

    Zhao Y P 2014 Nano and Mesoscopic Mechanics (Beijing: Science Press) p14 (in Chinese) [赵亚溥 2014 纳米与介观力学(北京:科学出版社) 第14页]

    [27]

    Zhang Y Y, Wang C M, Cheng Y, Xiang Y 2011 Carbon 49 4511

  • [1] 韩同伟, 李选政, 赵泽若, 顾叶彤, 马川, 张小燕. 不同荷载作用下二维硼烯的力学性能及变形破坏机理.  , 2024, 73(11): 116201. doi: 10.7498/aps.73.20240066
    [2] 陈晶晶, 赵洪坡, 王葵, 占慧敏, 罗泽宇. SiC基底覆多层石墨烯力学强化性能分子动力学模拟.  , 2024, 73(10): 109601. doi: 10.7498/aps.73.20232031
    [3] 余欣秀, 李多生, 叶寅, 朗文昌, 刘俊红, 陈劲松, 于爽爽. 硬质合金表面镍过渡层对碳原子沉积与石墨烯生长影响的分子动力学模拟.  , 2024, 73(23): 238701. doi: 10.7498/aps.73.20241170
    [4] 丁业章, 叶寅, 李多生, 徐锋, 朗文昌, 刘俊红, 温鑫. WC-Co硬质合金表面石墨烯沉积生长分子动力学仿真研究.  , 2023, 72(6): 068703. doi: 10.7498/aps.72.20221332
    [5] 明知非, 宋海洋, 安敏荣. 基于分子动力学模拟的石墨烯镁基复合材料力学行为.  , 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [6] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟.  , 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [7] 陈善登, 白清顺, 窦昱昊, 郭万民, 王洪飞, 杜云龙. 金刚石晶界辅助石墨烯沉积的成核机理仿真.  , 2022, 71(8): 086103. doi: 10.7498/aps.71.20211981
    [8] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 张婷婷, 刘洋, 胡振洋, 唐小洁. 基于石墨烯电极的蒽醌分子器件开关特性.  , 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [9] 王延庆, 李佳豪, 彭勇, 赵又红, 白利春. 界面电流介入时石墨烯的载流摩擦行为.  , 2021, 70(20): 206802. doi: 10.7498/aps.70.20210892
    [10] 白清顺, 窦昱昊, 何欣, 张爱民, 郭永博. 基于分子动力学模拟的铜晶面石墨烯沉积生长机理.  , 2020, 69(22): 226102. doi: 10.7498/aps.69.20200781
    [11] 肖思, 秦应霖, 王慧, 王鹏, 马海铭, 何军, 王迎威. 辐射对称金字塔型剪纸的力学行为.  , 2020, 69(9): 096102. doi: 10.7498/aps.69.20200112
    [12] 史超, 林晨森, 陈硕, 朱军. 石墨烯表面的特征水分子排布及其湿润透明特性的分子动力学模拟.  , 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [13] 张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁. 石墨烯碳纳米管复合结构渗透特性的分子动力学研究.  , 2018, 67(5): 056102. doi: 10.7498/aps.67.20172424
    [14] 张忠强, 贾毓瑕, 郭新峰, 葛道晗, 程广贵, 丁建宁. 凹槽铜基底表面与单层石墨烯的相互作用特性研究.  , 2018, 67(3): 033101. doi: 10.7498/aps.67.20172249
    [15] 章孝顺, 章定国, 陈思佳, 洪嘉振. 基于绝对节点坐标法的大变形柔性梁几种动力学模型研究.  , 2016, 65(9): 094501. doi: 10.7498/aps.65.094501
    [16] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉. 硅功能化石墨烯热导率的分子动力学模拟.  , 2014, 63(7): 074401. doi: 10.7498/aps.63.074401
    [17] 徐志成, 钟伟荣. C60轰击石墨烯的瞬间动力学.  , 2014, 63(8): 083401. doi: 10.7498/aps.63.083401
    [18] 常旭. 多层石墨烯的表面起伏的分子动力学模拟.  , 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [19] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究.  , 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [20] 韩同伟, 贺鹏飞. 石墨烯弛豫性能的分子动力学模拟.  , 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
计量
  • 文章访问数:  7461
  • PDF下载量:  374
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-13
  • 修回日期:  2016-11-08
  • 刊出日期:  2017-03-05

/

返回文章
返回
Baidu
map