搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Stage2沉积速率对低温生长CIGS薄膜特性及器件的影响

李志国 刘玮 何静婧 李祖亮 韩安军 张超 周志强 张毅 孙云

引用本文:
Citation:

Stage2沉积速率对低温生长CIGS薄膜特性及器件的影响

李志国, 刘玮, 何静婧, 李祖亮, 韩安军, 张超, 周志强, 张毅, 孙云

Influences of deposition rate in second stage on the Cu(In,Ga)Se2 thin film and device prepared by low-temperature process

Li Zhi-Guo, Liu Wei, He Jing-Jing, Li Zu-Liang, Han An-Jun, Zhang Chao, Zhou Zhi-Qiang, Zhang Yi, Sun Yun
PDF
导出引用
  • 研究了三步法第二步沉积速率对低温生长Cu(In,Ga)Se2薄膜结构、 电学特性和器件特性的影响. 通过改变第二步沉积速率发现, 提高沉积速率可以显著促进薄膜晶粒生长, 提高晶粒紧凑程度降低晶界复合, 同时有效改善两相分离现象, 提高电池的开路电压和短路电流, 有助于Cu(In,Ga)Se2电池光电转换效率的提高. 但同时研究表明, 随着第二步沉积速率的增加, 会促进暂态Cu2-xSe晶粒的生长, 引起Cu(In,Ga)Se2薄膜表面粗糙度增大, 并阻碍Na向Cu(In,Ga)Se2薄膜表面的扩散, 造成施主缺陷钝化效应降低, 薄膜载流子浓度下降和电阻率升高, 且过高的沉积速率会引起电池内部复合增加并产生分流路径, 造成开路电压下降进而引起电池效率恶化. 最终, 通过最佳化第二步沉积速率, 在衬底温度为420℃时, 得到最高转换效率为11.24%的Cu(In,Ga)Se2薄膜太阳电池.
    Polycrystalline Cu(In,Ga)Se2 (CIGS) thin ?lms are deposited onto soda-lime glass substrates by the low-temperature three-stage process (below substrate temperature of 420℃). The influences of growth rate in the second stage on structural and electrical properties of CIGS thin film and device performance are investigated. With the increase of deposition rate during the second stage, the crystallinity and grain compactness of CIGS thin film are promoted, and the double-peak reflection pattern is reduced obviously,which can reduce the recombination in the grain boundary and help to improve the conversion efficiency of the CIGS solar cell significantly. However, according to the experimental results, higher growth rate during the second stage leads to rough surface and low carrier concentration. The larger surface roughness can be attributed to the larger grain size of secondary-phase Cu2-xSe, and the lower carrier concentration results from the reduction of passivation donor defect effect which is induced by the hindrance of Na diffusion from the glass substrate. High growth rate in the second stage is found to be able to increase the interface recombination and induce shunt paths in the solar cell and then the open circuit voltage and the cell parameters are deteriorated. Finally, a high conversion efficiency of 11.24% is achieved by optimizing the growth rate in the second stage.
    • 基金项目: 国家自然科学基金(批准号: 61076061, 60906033);天津市自然科学基金(批准号: 11JCYBJC01200)和国家高技术研究发展计划(批准号: 2004AA513020)
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61076061, 60906033), the Natural Science Foundation of Tianjin, China (Grant No. 11JCYBJC01200) and the National High Technology Research and Development Program of China (Grant No. 2004AA513020).
    [1]

    Repins I, Glynn S, Duenow J, Coutts T J, Metzger W K, Contreras M A 2009 Proceedings of Society of Photographic Instrumentation Engineers San Diego, California August 2-6, 2009 p74090M

    [2]

    Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M 2011 Progress in Photovoltaics: Research and Applications 19 894

    [3]

    Chirilă A, Buecheler S, Pianezzi F, Bloesch P, Gretener C, Uhl A R, Fella C, Kranz L, Perrenoud J, Seyrling S, Verma R, Nishiwaki S, Romanyuk Y E, Bilger G, Tiwari A N 2011 Nat. Mater. 10 857

    [4]

    Sharaman W N, Birkmire R W, Marsillac S, Marudachalam M, Orbey N, Russell T W F 1997 Proceedings of Photovoltaic Specialists Conference Anaheim, CA, September 29-Octobor 3, 1997 p331

    [5]

    Lundberg O, Bodegrd M, Stolt L 2003 Thin Solid Films 431 26

    [6]

    Chirila A, Seyrling S, Buecheler S, Guettler D, Nishiwaki S, Romanyuk Y E, Bilger G, Tiwari A N 2011 Progress in Photovoltaics: Research and Applications 20 209

    [7]

    Chirila A, Guettler D, Bremaud D 2009 Proceedings of Photovoltaic Specialists Conference Philadelphia, PA, June 7-12 2009 p812

    [8]

    Kessler J, Scholdstrom J, Stolt L 2000 Proceedings of Photovoltaic Specialists Conference Anchorage, AK, 2000 p509

    [9]

    Gabor A M, Tuttle J R, Bode M H, Franz A, Tennant A L, Contreras M A, Noufi R, Jensen D G, Hermann A M 1996 Solar Energy Materials and Solar Cells 41-42 247

    [10]

    Kohara N, Negami T, Nishitani M, Wada T 1995 Japanese Journal of Applied Physics 34 L1141

    [11]

    Nishiwaki S, Satoh T, Hayashi S, Hashimoto Y, Negami T, Wada T 1999 Journal of Materials Research 14 4514

    [12]

    Tuttle J R, Contreras M, Bode M H, Niles D, Albin D S, Matson R, Gabor A M, Tennant A, Duda A, Noufi R 1995 Journal of Applied Physics 77 153

    [13]

    Ao J P, Yang L, Yan L, Sun G Z, He Q, Zhou Z Q, Sun Y 2009 Acta Phys. Sin. 58 1870 (in Chinese) [敖建平, 杨亮, 闫礼, 孙国忠, 何青, 周志强, 孙云 2009 58 1870]

    [14]

    Noufi R, Yanfa Y, Abu-Shama J, Jones K, Al-Jassim M, Keyes B, Alleman J, Ramanathan K 2002 Proceedings of Photovoltaic Specialists Conference New Orleans LA, ETATS-UNIS May 19-24, 2002 p508

    [15]

    Zhang L, He Q, Jiang W L, Liu F F, Li C J, Sun Y 2009 Solar Energy Materials and Solar Cells 93 114

    [16]

    Zhang L, He Q, Xu C M, Xue Y H, Li C J, Sun Y 2008 Chin. Phys. B 17 3138

    [17]

    Li Z, Nishijima M, Yamada A, Konagai M 2009 Physica Status Solidi (c) 6 1273

    [18]

    Contreras M A, Jones K M, Gedvilas L, Matson R 2000 Proceedings of 16th European Photovoltaic Solar Energy Conference and Exhibition Glasgow, U.K., May 1-5, 2000 p732

    [19]

    Nishiwaki S, Satoh T, Hashimoto Y, Negami T, Wada T 2001 Journal of Materials Research 16 394

    [20]

    Shafarman W N, Klenk R, McCandless B E 1996 Journal of Applied Physics 79 7324

    [21]

    Ruckh M, Schmid D, Kaiser M, Schäffler R, Walter T, Schock H W 1996 Solar Energy Materials and Solar Cells 41-42 335

    [22]

    Rudmann D, Kaelin M, Haug F J, Kurdesau F, Zogg H, Tiwari A N 2003 Proceedings of Photovoltaic Energy Conversion Osaka, Japan, May 18 2003 p376

    [23]

    Niles D W, Al-Jassim M, Ramanathan K 1999 Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 17 291

    [24]

    Lundberg O, Lu J, Rockett A, Edoff M, Stolt L 2003 Journal of Physics and Chemistry of Solids 64 1499

    [25]

    Guttler D, Chirila A, Seyrling S, Blosch P, Buecheler S, Fontane X 2010 Proceedings of Photovoltaic Specialists Conference Honolulu, HI, June 20-25, 2010 p3420

    [26]

    Wei S H, Zhang S B, Zunger A 1999 Journal of Applied Physics 85 7214

    [27]

    He J J, Liu W, Li Z G, Li B Y, Han A J, Li G M, Zhang C, Zhang Y, Sun Y 2012 Acta Phys. Sin. 61 198801 (in Chinese) [何静婧, 刘玮, 李志国, 李博研, 韩安军, 李光旻, 张超, 张毅, 孙云 2012 61 198801]

    [28]

    Hegedus S S, Shafarman W N 2004 Progress in Photovoltaics: Research and Applications 12 155

    [29]

    Repins I, Contreras M A, Egaas B, DeHart C, Scharf J, Perkins C L, To B, Noufi R 2008 Progress in Photovoltaics: Research and Applications 16 235

    [30]

    Contreras M A, Ramanathan K, AbuShama J, Hasoon F, Young D L, Egaas B, Noufi R 2005 Progress in Photovoltaics: Research and Applications 13 209

    [31]

    Minemoto T, Matsui T, Takakura H, Hamakawa Y, Negami T, Hashimoto Y, Uenoyama T, Kitagawa M 2001 Solar Energy Materials and Solar Cells 67 83

    [32]

    Dullweber T, Rau U, Contreras M A, Noufi R, Schock H W 2000 Electron Devices 47 2249

  • [1]

    Repins I, Glynn S, Duenow J, Coutts T J, Metzger W K, Contreras M A 2009 Proceedings of Society of Photographic Instrumentation Engineers San Diego, California August 2-6, 2009 p74090M

    [2]

    Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M 2011 Progress in Photovoltaics: Research and Applications 19 894

    [3]

    Chirilă A, Buecheler S, Pianezzi F, Bloesch P, Gretener C, Uhl A R, Fella C, Kranz L, Perrenoud J, Seyrling S, Verma R, Nishiwaki S, Romanyuk Y E, Bilger G, Tiwari A N 2011 Nat. Mater. 10 857

    [4]

    Sharaman W N, Birkmire R W, Marsillac S, Marudachalam M, Orbey N, Russell T W F 1997 Proceedings of Photovoltaic Specialists Conference Anaheim, CA, September 29-Octobor 3, 1997 p331

    [5]

    Lundberg O, Bodegrd M, Stolt L 2003 Thin Solid Films 431 26

    [6]

    Chirila A, Seyrling S, Buecheler S, Guettler D, Nishiwaki S, Romanyuk Y E, Bilger G, Tiwari A N 2011 Progress in Photovoltaics: Research and Applications 20 209

    [7]

    Chirila A, Guettler D, Bremaud D 2009 Proceedings of Photovoltaic Specialists Conference Philadelphia, PA, June 7-12 2009 p812

    [8]

    Kessler J, Scholdstrom J, Stolt L 2000 Proceedings of Photovoltaic Specialists Conference Anchorage, AK, 2000 p509

    [9]

    Gabor A M, Tuttle J R, Bode M H, Franz A, Tennant A L, Contreras M A, Noufi R, Jensen D G, Hermann A M 1996 Solar Energy Materials and Solar Cells 41-42 247

    [10]

    Kohara N, Negami T, Nishitani M, Wada T 1995 Japanese Journal of Applied Physics 34 L1141

    [11]

    Nishiwaki S, Satoh T, Hayashi S, Hashimoto Y, Negami T, Wada T 1999 Journal of Materials Research 14 4514

    [12]

    Tuttle J R, Contreras M, Bode M H, Niles D, Albin D S, Matson R, Gabor A M, Tennant A, Duda A, Noufi R 1995 Journal of Applied Physics 77 153

    [13]

    Ao J P, Yang L, Yan L, Sun G Z, He Q, Zhou Z Q, Sun Y 2009 Acta Phys. Sin. 58 1870 (in Chinese) [敖建平, 杨亮, 闫礼, 孙国忠, 何青, 周志强, 孙云 2009 58 1870]

    [14]

    Noufi R, Yanfa Y, Abu-Shama J, Jones K, Al-Jassim M, Keyes B, Alleman J, Ramanathan K 2002 Proceedings of Photovoltaic Specialists Conference New Orleans LA, ETATS-UNIS May 19-24, 2002 p508

    [15]

    Zhang L, He Q, Jiang W L, Liu F F, Li C J, Sun Y 2009 Solar Energy Materials and Solar Cells 93 114

    [16]

    Zhang L, He Q, Xu C M, Xue Y H, Li C J, Sun Y 2008 Chin. Phys. B 17 3138

    [17]

    Li Z, Nishijima M, Yamada A, Konagai M 2009 Physica Status Solidi (c) 6 1273

    [18]

    Contreras M A, Jones K M, Gedvilas L, Matson R 2000 Proceedings of 16th European Photovoltaic Solar Energy Conference and Exhibition Glasgow, U.K., May 1-5, 2000 p732

    [19]

    Nishiwaki S, Satoh T, Hashimoto Y, Negami T, Wada T 2001 Journal of Materials Research 16 394

    [20]

    Shafarman W N, Klenk R, McCandless B E 1996 Journal of Applied Physics 79 7324

    [21]

    Ruckh M, Schmid D, Kaiser M, Schäffler R, Walter T, Schock H W 1996 Solar Energy Materials and Solar Cells 41-42 335

    [22]

    Rudmann D, Kaelin M, Haug F J, Kurdesau F, Zogg H, Tiwari A N 2003 Proceedings of Photovoltaic Energy Conversion Osaka, Japan, May 18 2003 p376

    [23]

    Niles D W, Al-Jassim M, Ramanathan K 1999 Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 17 291

    [24]

    Lundberg O, Lu J, Rockett A, Edoff M, Stolt L 2003 Journal of Physics and Chemistry of Solids 64 1499

    [25]

    Guttler D, Chirila A, Seyrling S, Blosch P, Buecheler S, Fontane X 2010 Proceedings of Photovoltaic Specialists Conference Honolulu, HI, June 20-25, 2010 p3420

    [26]

    Wei S H, Zhang S B, Zunger A 1999 Journal of Applied Physics 85 7214

    [27]

    He J J, Liu W, Li Z G, Li B Y, Han A J, Li G M, Zhang C, Zhang Y, Sun Y 2012 Acta Phys. Sin. 61 198801 (in Chinese) [何静婧, 刘玮, 李志国, 李博研, 韩安军, 李光旻, 张超, 张毅, 孙云 2012 61 198801]

    [28]

    Hegedus S S, Shafarman W N 2004 Progress in Photovoltaics: Research and Applications 12 155

    [29]

    Repins I, Contreras M A, Egaas B, DeHart C, Scharf J, Perkins C L, To B, Noufi R 2008 Progress in Photovoltaics: Research and Applications 16 235

    [30]

    Contreras M A, Ramanathan K, AbuShama J, Hasoon F, Young D L, Egaas B, Noufi R 2005 Progress in Photovoltaics: Research and Applications 13 209

    [31]

    Minemoto T, Matsui T, Takakura H, Hamakawa Y, Negami T, Hashimoto Y, Uenoyama T, Kitagawa M 2001 Solar Energy Materials and Solar Cells 67 83

    [32]

    Dullweber T, Rau U, Contreras M A, Noufi R, Schock H W 2000 Electron Devices 47 2249

  • [1] 王仕东, 闫雅婷, 王瑞英, 朱志立, 谷锦华. 铯掺杂提升反梯度结构二维(CMA)2MA8Pb9I28钙钛矿薄膜及太阳电池的性能.  , 2023, 72(13): 138801. doi: 10.7498/aps.72.20230357
    [2] 丁业章, 叶寅, 李多生, 徐锋, 朗文昌, 刘俊红, 温鑫. WC-Co硬质合金表面石墨烯沉积生长分子动力学仿真研究.  , 2023, 72(6): 068703. doi: 10.7498/aps.72.20221332
    [3] 杜相, 陈思, 林东旭, 谢方艳, 陈建, 谢伟广, 刘彭义. 十二烷二酸修饰TiO2电子传输层改善钙钛矿太阳电池的电流特性.  , 2018, 67(9): 098801. doi: 10.7498/aps.67.20172779
    [4] 陈新亮, 陈莉, 周忠信, 赵颖, 张晓丹. Cu2O/ZnO氧化物异质结太阳电池的研究进展.  , 2018, 67(11): 118401. doi: 10.7498/aps.67.20172037
    [5] 姚鑫, 丁艳丽, 张晓丹, 赵颖. 钙钛矿太阳电池综述.  , 2015, 64(3): 038805. doi: 10.7498/aps.64.038805
    [6] 曾湘安, 艾斌, 邓幼俊, 沈辉. 硅片及其太阳电池的光衰规律研究.  , 2014, 63(2): 028803. doi: 10.7498/aps.63.028803
    [7] 张永, 单智发, 蔡建九, 吴洪清, 李俊承, 陈凯轩, 林志伟, 王向武. 空间用GaInP/GaAs/In0.3Ga0.7 As(1 eV)倒装三结太阳电池研制.  , 2013, 62(15): 158802. doi: 10.7498/aps.62.158802
    [8] 冯嘉恒, 唐立丹, 刘邦武, 夏洋, 王冰. 等离子增强原子层沉积低温生长AlN薄膜.  , 2013, 62(11): 117302. doi: 10.7498/aps.62.117302
    [9] 韩安军, 孙云, 李志国, 李博研, 何静靖, 张毅, 刘玮. 低温超薄高效Cu(In, Ga)Se2太阳电池的实现.  , 2013, 62(4): 048401. doi: 10.7498/aps.62.048401
    [10] 张坤, 刘芳洋, 赖延清, 李轶, 颜畅, 张治安, 李劼, 刘业翔. 太阳电池用Cu2ZnSnS4薄膜的反应溅射原位生长及表征.  , 2011, 60(2): 028802. doi: 10.7498/aps.60.028802
    [11] 梁林云, 戴松元, 胡林华, 戴俊, 刘伟庆. TiO2颗粒尺寸对染料敏化太阳电池内电子输运特性影响研究.  , 2009, 58(2): 1338-1343. doi: 10.7498/aps.58.1338
    [12] 於黄忠, 彭俊彪, 刘金成. MEH-PPV与TiO2共混体系太阳电池性能分析.  , 2009, 58(1): 669-673. doi: 10.7498/aps.58.669
    [13] 岑忞, 章岳光, 陈卫兰, 顾培夫. 沉积速率和氧分压对HfO2薄膜残余应力的影响.  , 2009, 58(10): 7025-7029. doi: 10.7498/aps.58.7025
    [14] 梁林云, 戴松元, 方霞琴, 胡林华. 染料敏化太阳电池中TiO2膜内电子传输和背反应特性研究.  , 2008, 57(3): 1956-1962. doi: 10.7498/aps.57.1956
    [15] 李 微, 敖建平, 何 青, 刘芳芳, 李凤岩, 李长健, 孙 云. 衬底对Cu(In, Ga)Se2薄膜织构的影响.  , 2007, 56(8): 5009-5012. doi: 10.7498/aps.56.5009
    [16] 戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘 旭, 王孔嘉. 染料敏化纳米薄膜太阳电池实验研究.  , 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [17] 曾隆月, 戴松元, 王孔嘉, 史成武, 孔凡太, 胡林华, 潘 旭. 染料敏化纳米ZnO薄膜太阳电池机理初探.  , 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
    [18] 王晓强, 栗军帅, 陈 强, 祁 菁, 尹 旻, 贺德衍. 电感耦合等离子体CVD低温生长硅薄膜过程中的铝诱导晶化.  , 2005, 54(1): 269-273. doi: 10.7498/aps.54.269
    [19] 徐炜炜, 戴松元, 方霞琴, 胡林华, 孔凡太, 潘 旭, 王孔嘉. 电沉积处理与染料敏化纳米薄膜太阳电池的优化.  , 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [20] 贺德衍. 多晶硅薄膜低温生长中的表面反应控制.  , 2001, 50(4): 779-783. doi: 10.7498/aps.50.779
计量
  • 文章访问数:  6588
  • PDF下载量:  479
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-29
  • 修回日期:  2012-09-04
  • 刊出日期:  2013-02-05

/

返回文章
返回
Baidu
map