-
Structural radar absorber has important application in stealth field for its ability to effectively absorb incoming radar wave and to bear the load at the same time. Metasurface absorbers can achieve nearly-perfect absorption of radar wave, and have characteristics of light weight and thin structure, but their bandwidth are usually narrow. To solve this problem, a new method of broadening the bandwidth of metasurface absorber is proposed in this work. With varactor and PIN diode integrated in a hybrid manner, the continuous tunning and discrete switching are combined together to broaden the effective absorption bandwidth of the absorber. Using this method, an ultra-wideband tunable metasurface absorber is designed and the absorbing mechanism is analyzed in depth. By changing the bias voltages of PIN diodes and varactors, the absorbing frequency can be continuously tuned within a wide band from 4.57 GHz to 8.51 GHz. Measured results verify the low radar cross section characteristics of the absorber and the effectiveness of the design method. The proposed method is simple and feasible, and can be extended to other broadband structure design.
[1] Li T, Yang H, Li Q, Zhang C, Han J, Cong L, Cao X, Gao J 2019 Opt. Mater. Express 9 1161
Google Scholar
[2] Yang H, Li T, Xu L, Cao X, Jidi L, Guo Z, Li P, Gao J 2021 IEEE T. Antenn. Propag. 69 1239
Google Scholar
[3] Li T, Yang H, Li Q, Zhu X, Cao X, Gao J, Wu Z 2019 IET Microw. Antenna. P. 13 185
Google Scholar
[4] 崔铁军, 吴浩天, 刘硕 2020 69 158101
Google Scholar
Cui T J, Wu H T, Liu S 2020 Acta Phys. Sin 69 158101
Google Scholar
[5] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218
Google Scholar
[6] Jia Y, Liu Y, Guo Y J, Li K, Gong S X 2015 IEEE T. Antenn. Propag. 64 179
Google Scholar
[7] Liu T, Cao X, Gao J, Zheng Q, Li W, Yang H 2013 IEEE T. Antenn. Propag. 61 1479
Google Scholar
[8] Liu Y, Zhao X 2014 IEEE Antenn. Wirel. 13 1473
Google Scholar
[9] Ren J, Gong S, Jiang W 2018 IEEE Antenn. Wirel. PP 17 102
Google Scholar
[10] Landy N, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402
Google Scholar
[11] Shen X P, Cui T J, Zhao J M, Ma H F, Jiang W X, Li H 2011 Opt. Express 19 9401
Google Scholar
[12] Mei P, Zhang S, Lin X Q, Pedersen G F 2019 IEEE Antenn. Wirel. PP 18 521
Google Scholar
[13] Zhang H B, Zhou P H, Lu H P, Xu Y Q, Liang D F, Deng L J 2012 IEEE T. Antenn. Propag. 61 976
Google Scholar
[14] Costa F, Monorchio A, Manara G 2010 IEEE T. Antenn. Propag. 58 1551
Google Scholar
[15] Lim D, Lim S 2019 IEEE Antenn. Wirel. PP 18 1887
Google Scholar
[16] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东 2013 62 214101
Google Scholar
Yang H H, Cao X Y, Gao J, Liu T, Li S J, Zhao Y, Yuan Z D, Zhang H 2013 Acta Phys. Sin 62 214101
Google Scholar
[17] Lu X, Chen J, Peng Z, Wu Z, Anxue Z 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC) Taiyuan, China, July 18–21, 2019 p1
[18] Panwar R, Puthucheri S, Agarwala V, Singh D 2015 IEEE T. Microw. Theory Techn. 63 2438
Google Scholar
[19] Zhao B, Huang C, Yang J, Song J, Guan C, Luo X 2020 IEEE Antenn. Wirel. PP 19 982
Google Scholar
[20] Ghosh S K, Yadav V S, Das S, Bhattacharyya S 2020 IEEE T. Electromagn. C. 62 346
Google Scholar
[21] Shang Y, Shen Z, Xiao S 2013 IEEE T. Antenn. Propag. 61 6022
Google Scholar
[22] Zhang B, Jin C, Shen Z 2020 IEEE T. Microw. Theory Techn. 68 835
Google Scholar
[23] Han Y, Che W 2017 IEEE Antenn. Wirel. PP 16 74
Google Scholar
[24] Chen J, Hu Z, Wang G, Huang X, Wang S, Hu X, Liu M 2015 IEEE T. Antenn. Propag. 63 4367
Google Scholar
[25] 杨欢欢, 曹祥玉, 高军, 李桐, 李思佳, 丛丽丽, 赵霞 2021 雷达学报 10 206
Google Scholar
Ynag H H, Cao X Y, Gao J, Li T, Li S J, Cong L L, Zhao X 2021 J. Radars 10 206
Google Scholar
[26] Hu N, Zhang J, Zha S, Liu C, Liu H, Liu P 2019 IEEE Antenn. Wirel. PP 18 373
Google Scholar
[27] Kim S, Li A, Lee J, Sievenpiper D F 2021 IEEE T. Antenn. Propag. 69 2759
Google Scholar
[28] Li A, Kim S, Luo Y, Li Y, Long J, Sievenpiper D F 2017 IEEE T. Microw. Theory Techn. 65 2810
Google Scholar
[29] Zhang Y, Cao Z, Huang Z, Miao L, Bie S, Jiang J 2021 IEEE T. Antenn. Propag. 69 1204
Google Scholar
[30] Costa F, Monorchio A, Vastante G P 2011 IEEE Antenn. Wirel. PP 10 11
Google Scholar
[31] Xu W, Sonkusale S 2013 Appl. Phys. Lett. 103 031902
Google Scholar
[32] Yuan H, Li H, Fang X, Wang Y, Cao Q 2021 IEEE Antenn. Wirel. PR 63 11
Google Scholar
[33] Xu W H, He Y, Kong P, Li J L, Xu H B, Miao L, Bie S W, Jiang J J 2015 J. Appl. Phys. 118 184903
Google Scholar
[34] Raad H R, Abbosh A I, Al-Rizzo H M, Rucker D G 2013 IEEE T. Antenn. Propag. 61 524
Google Scholar
[35] Yang H, Cao X, Yang F, Gao J, Xu S, Li M, Chen X, Zhao Y, Zheng Y, Li S 2016 Sci. Rep. 6 35692
Google Scholar
-
图 7 吸波体性能随介质基板厚度的变化(PIN导通, C = 0.71 pF, tanδ = 0.02) (a) 吸波率; (b) 表面阻抗实部; (c) 表面阻抗虚部
Figure 7. Simulated performance of the proposed ultra-wideband AMSA with different substrate thicknesses (PIN diode at ON state, C = 0.71 pF, tanδ = 0.02): (a) Absorptivity; (b) real part of surface impedance; (c) imaginary part of surface impedance.
表 1 超宽带可调超表面吸波体仿真与实测性能
Table 1. Simulated and measured performance of ultra wideband adjustable surface absorber.
偏置电压/V C/
pF吸波峰值
频率/GHzRCS减缩峰值
频率/GHzVd Vc 仿真 仿真 实测 0.95 0.5 17.41 4.57 4.50 4.48 9.0 1.45 5.45 5.47 5.52 30.0 0.71 6.05 6.03 6.16 0 0.5 10.23 5.85 5.90 5.82 9.0 1.45 7.31 7.26 7.10 30.0 0.71 8.51 8.46 8.34 -
[1] Li T, Yang H, Li Q, Zhang C, Han J, Cong L, Cao X, Gao J 2019 Opt. Mater. Express 9 1161
Google Scholar
[2] Yang H, Li T, Xu L, Cao X, Jidi L, Guo Z, Li P, Gao J 2021 IEEE T. Antenn. Propag. 69 1239
Google Scholar
[3] Li T, Yang H, Li Q, Zhu X, Cao X, Gao J, Wu Z 2019 IET Microw. Antenna. P. 13 185
Google Scholar
[4] 崔铁军, 吴浩天, 刘硕 2020 69 158101
Google Scholar
Cui T J, Wu H T, Liu S 2020 Acta Phys. Sin 69 158101
Google Scholar
[5] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218
Google Scholar
[6] Jia Y, Liu Y, Guo Y J, Li K, Gong S X 2015 IEEE T. Antenn. Propag. 64 179
Google Scholar
[7] Liu T, Cao X, Gao J, Zheng Q, Li W, Yang H 2013 IEEE T. Antenn. Propag. 61 1479
Google Scholar
[8] Liu Y, Zhao X 2014 IEEE Antenn. Wirel. 13 1473
Google Scholar
[9] Ren J, Gong S, Jiang W 2018 IEEE Antenn. Wirel. PP 17 102
Google Scholar
[10] Landy N, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402
Google Scholar
[11] Shen X P, Cui T J, Zhao J M, Ma H F, Jiang W X, Li H 2011 Opt. Express 19 9401
Google Scholar
[12] Mei P, Zhang S, Lin X Q, Pedersen G F 2019 IEEE Antenn. Wirel. PP 18 521
Google Scholar
[13] Zhang H B, Zhou P H, Lu H P, Xu Y Q, Liang D F, Deng L J 2012 IEEE T. Antenn. Propag. 61 976
Google Scholar
[14] Costa F, Monorchio A, Manara G 2010 IEEE T. Antenn. Propag. 58 1551
Google Scholar
[15] Lim D, Lim S 2019 IEEE Antenn. Wirel. PP 18 1887
Google Scholar
[16] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东 2013 62 214101
Google Scholar
Yang H H, Cao X Y, Gao J, Liu T, Li S J, Zhao Y, Yuan Z D, Zhang H 2013 Acta Phys. Sin 62 214101
Google Scholar
[17] Lu X, Chen J, Peng Z, Wu Z, Anxue Z 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC) Taiyuan, China, July 18–21, 2019 p1
[18] Panwar R, Puthucheri S, Agarwala V, Singh D 2015 IEEE T. Microw. Theory Techn. 63 2438
Google Scholar
[19] Zhao B, Huang C, Yang J, Song J, Guan C, Luo X 2020 IEEE Antenn. Wirel. PP 19 982
Google Scholar
[20] Ghosh S K, Yadav V S, Das S, Bhattacharyya S 2020 IEEE T. Electromagn. C. 62 346
Google Scholar
[21] Shang Y, Shen Z, Xiao S 2013 IEEE T. Antenn. Propag. 61 6022
Google Scholar
[22] Zhang B, Jin C, Shen Z 2020 IEEE T. Microw. Theory Techn. 68 835
Google Scholar
[23] Han Y, Che W 2017 IEEE Antenn. Wirel. PP 16 74
Google Scholar
[24] Chen J, Hu Z, Wang G, Huang X, Wang S, Hu X, Liu M 2015 IEEE T. Antenn. Propag. 63 4367
Google Scholar
[25] 杨欢欢, 曹祥玉, 高军, 李桐, 李思佳, 丛丽丽, 赵霞 2021 雷达学报 10 206
Google Scholar
Ynag H H, Cao X Y, Gao J, Li T, Li S J, Cong L L, Zhao X 2021 J. Radars 10 206
Google Scholar
[26] Hu N, Zhang J, Zha S, Liu C, Liu H, Liu P 2019 IEEE Antenn. Wirel. PP 18 373
Google Scholar
[27] Kim S, Li A, Lee J, Sievenpiper D F 2021 IEEE T. Antenn. Propag. 69 2759
Google Scholar
[28] Li A, Kim S, Luo Y, Li Y, Long J, Sievenpiper D F 2017 IEEE T. Microw. Theory Techn. 65 2810
Google Scholar
[29] Zhang Y, Cao Z, Huang Z, Miao L, Bie S, Jiang J 2021 IEEE T. Antenn. Propag. 69 1204
Google Scholar
[30] Costa F, Monorchio A, Vastante G P 2011 IEEE Antenn. Wirel. PP 10 11
Google Scholar
[31] Xu W, Sonkusale S 2013 Appl. Phys. Lett. 103 031902
Google Scholar
[32] Yuan H, Li H, Fang X, Wang Y, Cao Q 2021 IEEE Antenn. Wirel. PR 63 11
Google Scholar
[33] Xu W H, He Y, Kong P, Li J L, Xu H B, Miao L, Bie S W, Jiang J J 2015 J. Appl. Phys. 118 184903
Google Scholar
[34] Raad H R, Abbosh A I, Al-Rizzo H M, Rucker D G 2013 IEEE T. Antenn. Propag. 61 524
Google Scholar
[35] Yang H, Cao X, Yang F, Gao J, Xu S, Li M, Chen X, Zhao Y, Zheng Y, Li S 2016 Sci. Rep. 6 35692
Google Scholar
Catalog
Metrics
- Abstract views: 5708
- PDF Downloads: 148
- Cited By: 0