-
基于超材料的电磁谐振特性, 设计、制作了一种极化无关的宽带低雷达散射截面 (radar cross section, RCS)超材料吸波体. 通过场分布和反演法分析了其吸波机理, 利用波导法和空间波法测试了其吸波率和RCS特性. 理论分析表明: 在平面波的作用下, 该吸波体对某一吸波频率在不同的位置分别提供电谐振和磁谐振, 对不同的吸波频率, 利用不同的介质层提供主要的能量损耗, 从而有效减弱了电磁耦合, 保证了宽频带的强吸收特性. 实验结果表明: 设计的三层结构吸波体吸波率达90%以上的带宽是单层结构的4.25倍, RCS减缩10 dB以上的带宽为5.1%, 其单元尺寸为0.17λ, 厚度仅为0.015λ. 该吸波体的低RCS特性还具有极化无关、宽入射角的特点, 且通过改变吸波体的夹层结构可以实现工作带宽的灵活调节.We have designed and fabricated a broadband low radar cross section (RCS) metamaterial absorber with polarization-independent characteristic based on electromagnetic resonance. The absorbing mechanism is investigated by means of electric as well as magnetic field distributions and retrieval algorithm. Absorbing and RCS properties of this absorber are performed by waveguide experiment and free space measurements, respectively. Theoretical analysis indicates that the absorber can produce electric and magnetic resonances in different locations for fixed frequency, while for different frequencies, it can provide energy losses in different dielectric layers, which effectively lowers the electromagnetic couplings and consequently keep the strong absorbing properties in a wide frequency range. Experimental results show that the designed absorber with 3-layer structure achieves a frequency range which is 4.25 times as that of 1-layer absorber with absorptivity above 90%, its relative bandwidth for RCS reduction above 10dB is 5.1%. The cell size and thickness of the designed absorber are very small, i.e., 0.17 and 0.015 of the working wavelength. Thus the low-RCS property of the absorber is wide-angle and polarization-independent. In addition, the working frequency range of the absorber can be adjusted by properly designing the layers.
[1] Sievenpiper D, Zhang L J, Broas R F J, Alex’opolous N G, Yablonovitch E 1999 IEEE Trans. Microw. Theory Tech. 47 2059
[2] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[3] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977
[4] Li W Q, Cao X Y, Gao J, Liu T, Yao X, Ma J J 2012 Acta Phys. Sin. 61 154102 (in Chinese) [李文强, 曹祥玉, 高军, 刘涛, 姚旭, 马嘉俊 2012 61 154102]
[5] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402
[6] Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Uaylor A J, Chen H T 2012 Opt. Lett. 37 154
[7] Wang J, Chen Y T, Hao J M, Yan M, Qiu M 2011 J. Appl. Phys. 109 074510
[8] Lin C H, Chern R L, Lin H Y 2011 Opt. Express 19 415
[9] Liu T, Cao X Y, Gao J, Zheng Q Y, Li W Q 2012 Acta Phys. Sin. 61 184101 (in Chinese) [刘涛, 曹祥玉, 高军, 郑秋容, 李文强 2012 61 184101]
[10] Yang H H, Cao X Y, Gao J, Liu T, Ma J J, Yao X, Li W Q 2013 Acta Phys. Sin. 62 064103 (in Chinese) [杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强 2013 62 064103]
[11] Li S J, Cao X Y, Gao J, Liu T, Yang H H, Li W Q 2013 Acta Phys. Sin. 62 124101 (in Chinese) [李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强 2013 62 124101]
[12] Tao H, Landy N I, Bingham C M 2008 Opt. Express 16 7181
[13] Marcus D, Thomas K, Soukoulis C M 2009 Phys. Rev. B 79 033101
[14] Luukkonen O, Filippo C, Agostino M, Sergei A T 2009 IEEE Trans. on Anten. and Propag. 57 3119
[15] Wang B N, Koschny T, Soukoulis C M 2010 Phys. Optics 24 1
[16] Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104
[17] Gu C, Qu S B, Pei Z B, Xu Z, Ma H, Lin B Q, Bai P, Peng W D 2011 Acta Phys. Sin. 60 107801 (in Chinese) [顾超, 屈绍波, 裴志斌, 徐卓, 马华, 林宝勤, 柏鹏, 彭卫东 2011 60 107801]
[18] Lee J Y, Yoon Y J, Lim S J 2012 ETRI Journal 34 126
[19] He X J, Wang Y, Wang J M, Gui T L 2011 Progress In Electromag. Research 115 381
[20] Li H, Yuan L H, Zhou B, Shen X P, Cheng Q, Cui T J 2011 Journal of Applied Phys. 110 014909
[21] Shen X P, Cui T J, Ye J X 2012 Acta Phys. Sin. 61 058101 (in Chinese) [沈晓鹏, 崔铁军, 叶建祥 2012 61 058101]
[22] Su B, Gong B Y, Zhao X P 2012 Acta Phys. Sin. 61 144203 (in Chinese) [苏斌, 龚伯仪, 赵晓鹏 2012 61 144203]
[23] Li L, Yang Y, Liang C H 2011 J. Appl. Phys. 110 063702
[24] Zhu B, Huang C, Feng Y 2010 Progress In Electromag. Research 24 121
[25] Yang Y J, Huang Y J, Wen G J, Zhong J P, Sun H B, Gordon O 2012 Chin. Phys. B 21 038501
[26] Zhu W R, Huang Y J, Rukhlenko I D, Wen G J and Premaratne M 2012 Opt. Express 20 6616
[27] Luo H, Cheng Y Z, Gong R Z 2011 Eur. Phys. J. B 81 387
[28] Luo H, Wang T, Gong R Z, Nie Y, Wang X 2011 Chin. Phys. Lett. 28 03420411
[29] Ye Y Q, Jin Y, He S L 2009 Phys. Opt. 11 1
[30] Bao S, Luo C R, Zhang Y P, Zhao X P 2010 Acta Phys. Sin. 59 3187 (in Chinese) [保石, 罗春荣, 张燕萍, 赵晓鹏 2010 59 3187]
[31] Gu C, Qu S B, Pei Z B, Zhou H, Wang J 2010 Progress In Electromag. Research 17 171
[32] Lee J Y, Lim S J 2011 Electro. Lett. 47 8
[33] Huang Y J, Wen G J, Li J, Zhong J P, Wang P, Sun Y H, Gordon O, Zhu W R 2012 Chin. Phys. B 21 117801
[34] Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617
[35] Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE Trans. on Anten. and Propag 61 2327
-
[1] Sievenpiper D, Zhang L J, Broas R F J, Alex’opolous N G, Yablonovitch E 1999 IEEE Trans. Microw. Theory Tech. 47 2059
[2] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[3] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977
[4] Li W Q, Cao X Y, Gao J, Liu T, Yao X, Ma J J 2012 Acta Phys. Sin. 61 154102 (in Chinese) [李文强, 曹祥玉, 高军, 刘涛, 姚旭, 马嘉俊 2012 61 154102]
[5] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402
[6] Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Uaylor A J, Chen H T 2012 Opt. Lett. 37 154
[7] Wang J, Chen Y T, Hao J M, Yan M, Qiu M 2011 J. Appl. Phys. 109 074510
[8] Lin C H, Chern R L, Lin H Y 2011 Opt. Express 19 415
[9] Liu T, Cao X Y, Gao J, Zheng Q Y, Li W Q 2012 Acta Phys. Sin. 61 184101 (in Chinese) [刘涛, 曹祥玉, 高军, 郑秋容, 李文强 2012 61 184101]
[10] Yang H H, Cao X Y, Gao J, Liu T, Ma J J, Yao X, Li W Q 2013 Acta Phys. Sin. 62 064103 (in Chinese) [杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强 2013 62 064103]
[11] Li S J, Cao X Y, Gao J, Liu T, Yang H H, Li W Q 2013 Acta Phys. Sin. 62 124101 (in Chinese) [李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强 2013 62 124101]
[12] Tao H, Landy N I, Bingham C M 2008 Opt. Express 16 7181
[13] Marcus D, Thomas K, Soukoulis C M 2009 Phys. Rev. B 79 033101
[14] Luukkonen O, Filippo C, Agostino M, Sergei A T 2009 IEEE Trans. on Anten. and Propag. 57 3119
[15] Wang B N, Koschny T, Soukoulis C M 2010 Phys. Optics 24 1
[16] Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104
[17] Gu C, Qu S B, Pei Z B, Xu Z, Ma H, Lin B Q, Bai P, Peng W D 2011 Acta Phys. Sin. 60 107801 (in Chinese) [顾超, 屈绍波, 裴志斌, 徐卓, 马华, 林宝勤, 柏鹏, 彭卫东 2011 60 107801]
[18] Lee J Y, Yoon Y J, Lim S J 2012 ETRI Journal 34 126
[19] He X J, Wang Y, Wang J M, Gui T L 2011 Progress In Electromag. Research 115 381
[20] Li H, Yuan L H, Zhou B, Shen X P, Cheng Q, Cui T J 2011 Journal of Applied Phys. 110 014909
[21] Shen X P, Cui T J, Ye J X 2012 Acta Phys. Sin. 61 058101 (in Chinese) [沈晓鹏, 崔铁军, 叶建祥 2012 61 058101]
[22] Su B, Gong B Y, Zhao X P 2012 Acta Phys. Sin. 61 144203 (in Chinese) [苏斌, 龚伯仪, 赵晓鹏 2012 61 144203]
[23] Li L, Yang Y, Liang C H 2011 J. Appl. Phys. 110 063702
[24] Zhu B, Huang C, Feng Y 2010 Progress In Electromag. Research 24 121
[25] Yang Y J, Huang Y J, Wen G J, Zhong J P, Sun H B, Gordon O 2012 Chin. Phys. B 21 038501
[26] Zhu W R, Huang Y J, Rukhlenko I D, Wen G J and Premaratne M 2012 Opt. Express 20 6616
[27] Luo H, Cheng Y Z, Gong R Z 2011 Eur. Phys. J. B 81 387
[28] Luo H, Wang T, Gong R Z, Nie Y, Wang X 2011 Chin. Phys. Lett. 28 03420411
[29] Ye Y Q, Jin Y, He S L 2009 Phys. Opt. 11 1
[30] Bao S, Luo C R, Zhang Y P, Zhao X P 2010 Acta Phys. Sin. 59 3187 (in Chinese) [保石, 罗春荣, 张燕萍, 赵晓鹏 2010 59 3187]
[31] Gu C, Qu S B, Pei Z B, Zhou H, Wang J 2010 Progress In Electromag. Research 17 171
[32] Lee J Y, Lim S J 2011 Electro. Lett. 47 8
[33] Huang Y J, Wen G J, Li J, Zhong J P, Wang P, Sun Y H, Gordon O, Zhu W R 2012 Chin. Phys. B 21 117801
[34] Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617
[35] Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE Trans. on Anten. and Propag 61 2327
计量
- 文章访问数: 6941
- PDF下载量: 813
- 被引次数: 0