-
A novel high-gain and low radar cross section (RCS) microstrip antenna is designed and fabricated. The proposed antenna obtained broad-band 3 dB gain bandwidth and wide-band, wide-angle low RCS properties after applying the frequency selective surface (FSS) as a superstrate of original microstrip antenna. The FSS cell is composed of two metallic layers separated by a dielectric substrate. A metallic square loop with four resistors mounted on each side of the loop is enched on the top layer and a metallic plane with a central cross slot and four fringe slots is enched on the bottom layer. The four resistors of top layer are mainly used to absorb radar incoming wave and reduce antenna RCS. The patch of bottom layer can constructe a Fabry-Perot resonance cavity with ground plane and improve the antenna gain. The reflection coefficient S22 and transmission coefficient S12 of top layer are all below -10 dB at 5.75-11.37 GHz. The reflection phase gradient of bottom layer is positive and the reflection magnitude value is above 0.86 from 11.21 GHz to 11.54 GHz. Measurement results show that the antenna gain is enhanced by about 3.4 dB at 11.73 GHz, and the half-power beam width of E-plane and H-plane is reduced 16° and 50° respectively. The 3 dB gain bandwidth is about 2.4 GHz which from 10.0 GHz to 12.4 GHz and well cover the impedance bandwidth. The proposed antenan achieved an RCS reduction of more than 3 dB in the normal direction at 4.10-11.30 GHz, the largest reduction reached 23.08 dB in comparison with the original antenna. The monostatic and bistatic RCS reduction are over 3 dB from -20° to 20° and -37° to 37° respectively at 4.95 GHz. The results proved the FSS superstrate can be applied to improve the radiation and scattering performance simultaneously.
-
Keywords:
- frequency selective surface /
- low radar cross section /
- high-gain /
- wide-band
[1] Guntupalli A B, Wu K 2014 IEEE Anten. Wire. Propag. 13 384
[2] Yeap S B, Chen Z M 2010 IEEE Trans. Anten. Propag. 58 2811
[3] Latif S I, Shafai L, Shafai C 2010 IET Microw. Anten. Propag. 5 402
[4] Prakash P, Abegaonkar M P, Basu A, Koul S K 2013 IEEE Anten. Wire. Propag. 12 1315
[5] Cook B S, Shamim A 2013 IEEE Anten. Wire. Propag. 12 76
[6] Ge Y H, Esselle K P, Bird T S 2012 IEEE Trans. Anten. Propag. 60 743
[7] Yuan Z D, Gao J, Cao X Y, Yang H H, Yang Q, Li W Q, Shang K 2014 Acta Phys. Sin. 63 014102 (in Chinese) [袁子东, 高军, 曹祥玉, 杨欢欢, 杨群, 李文强, 商楷 2014 63 014102]
[8] Jiang W, Gong S X, Hong T, Wang X 2010 Acta Electron. Sin. 38 2162 (in Chinese) [姜文, 龚书喜, 洪涛, 王兴 2010 电子学报 38 2162]
[9] Li S J, Gao J, Cao X Y, Li W Q, Zhang Z, Zhang D 2014 J. Appl. Phys. 115 213703
[10] Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802
[11] Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P 2007 IEEE Trans. Anten. Propagat. 55 3630
[12] Zhao Y, Cao X Y, Gao J, Li W Q 2014 IEEE Mic. Opt. Tech. Lett. 56 158
[13] Lin B Q, Zhao S H, Wei W, Da X Y, Zheng Q R, Zhang H Y, Zhu M 2014 Chin. Phys. B 23 024201
[14] Genovesi S, Costa F, Monorchio A 2014 IEEE Trans. Antenn. Propag. 62 163
[15] Cheng Y Z, Nie Y, Gong R Z, Wang X 2013 Acta Phys. Sin. 62 044103 (in Chinese) [程用志, 聂彦, 龚荣洲, 王鲜 2013 62 044103]
[16] Costa F, Monorchio A 2012 IEEE Trans. Anten. Propag. 60 2740
[17] Pan W B, Huang C, Chen P, Ma X L, Hu C G, Luo X G 2014 IEEE Trans. Anten. Propag. 62 945
[18] Jia H Y, Gao J S, Feng X G 2009 Chin. Phys. B 18 1227
[19] Lu G W, Zhang J, Yang J Y, Zhang T X, Kou Y 2013 Acta Phys. Sin. 62 198401 (in Chinese) [卢戈舞, 张剑, 杨洁颖, 张天翔, 寇元 2013 62 198401]
[20] Pirhadi A, Bahrami H, Nasri J 2012 IEEE Trans. Anten. Propag. 60 2101
[21] Wang M, Huang C, Chen P, Wang Y Q, Zhao Z Y, Luo X G 2014 IEEE Anten. Wire. Propag. 13 213
[22] Zuo Y, Shen Z X, Feng Y J 2014 Chin. Phys. B 23 034101
[23] Feresidis A P, Vardaxoglou J C 2001 IEE Proc.-Microw. Anten. Propag. 148 345
-
[1] Guntupalli A B, Wu K 2014 IEEE Anten. Wire. Propag. 13 384
[2] Yeap S B, Chen Z M 2010 IEEE Trans. Anten. Propag. 58 2811
[3] Latif S I, Shafai L, Shafai C 2010 IET Microw. Anten. Propag. 5 402
[4] Prakash P, Abegaonkar M P, Basu A, Koul S K 2013 IEEE Anten. Wire. Propag. 12 1315
[5] Cook B S, Shamim A 2013 IEEE Anten. Wire. Propag. 12 76
[6] Ge Y H, Esselle K P, Bird T S 2012 IEEE Trans. Anten. Propag. 60 743
[7] Yuan Z D, Gao J, Cao X Y, Yang H H, Yang Q, Li W Q, Shang K 2014 Acta Phys. Sin. 63 014102 (in Chinese) [袁子东, 高军, 曹祥玉, 杨欢欢, 杨群, 李文强, 商楷 2014 63 014102]
[8] Jiang W, Gong S X, Hong T, Wang X 2010 Acta Electron. Sin. 38 2162 (in Chinese) [姜文, 龚书喜, 洪涛, 王兴 2010 电子学报 38 2162]
[9] Li S J, Gao J, Cao X Y, Li W Q, Zhang Z, Zhang D 2014 J. Appl. Phys. 115 213703
[10] Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802
[11] Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P 2007 IEEE Trans. Anten. Propagat. 55 3630
[12] Zhao Y, Cao X Y, Gao J, Li W Q 2014 IEEE Mic. Opt. Tech. Lett. 56 158
[13] Lin B Q, Zhao S H, Wei W, Da X Y, Zheng Q R, Zhang H Y, Zhu M 2014 Chin. Phys. B 23 024201
[14] Genovesi S, Costa F, Monorchio A 2014 IEEE Trans. Antenn. Propag. 62 163
[15] Cheng Y Z, Nie Y, Gong R Z, Wang X 2013 Acta Phys. Sin. 62 044103 (in Chinese) [程用志, 聂彦, 龚荣洲, 王鲜 2013 62 044103]
[16] Costa F, Monorchio A 2012 IEEE Trans. Anten. Propag. 60 2740
[17] Pan W B, Huang C, Chen P, Ma X L, Hu C G, Luo X G 2014 IEEE Trans. Anten. Propag. 62 945
[18] Jia H Y, Gao J S, Feng X G 2009 Chin. Phys. B 18 1227
[19] Lu G W, Zhang J, Yang J Y, Zhang T X, Kou Y 2013 Acta Phys. Sin. 62 198401 (in Chinese) [卢戈舞, 张剑, 杨洁颖, 张天翔, 寇元 2013 62 198401]
[20] Pirhadi A, Bahrami H, Nasri J 2012 IEEE Trans. Anten. Propag. 60 2101
[21] Wang M, Huang C, Chen P, Wang Y Q, Zhao Z Y, Luo X G 2014 IEEE Anten. Wire. Propag. 13 213
[22] Zuo Y, Shen Z X, Feng Y J 2014 Chin. Phys. B 23 034101
[23] Feresidis A P, Vardaxoglou J C 2001 IEE Proc.-Microw. Anten. Propag. 148 345
Catalog
Metrics
- Abstract views: 6329
- PDF Downloads: 886
- Cited By: 0