-
提出一种电磁超构表面与天线一体化设计以实现低散射阵列的新方法. 该方法利用传输线将超构表面部分单元串联, 并采用同轴馈电激励, 以此得到新型天线阵列, 该阵列的辐射性能和传统阵列几乎相同; 当外来雷达波照射该阵列时, 利用超构表面和其周围天线结构散射场的差异, 将能量在空间重新分配, 从而实现天线工作频带内的雷达散射截面(radar cross section, RCS)减缩. 基于该方法, 以2 × 1阵列为例, 构建了天线模型, 数值分析了其性能, 验证了该阵列的良好辐射和低RCS特征, 并详细阐述了天线的工作机理, 进一步的分析还揭示了超构表面结构对天线辐射和散射性能的影响规律. 遵循该规律, 可以灵活设计满足需求的天线阵列. 该方法不仅简单易行、集成度高, 还可以拓展至更大规模的阵列天线设计.Aiming at obtaining low scattering antenna array, in this paper a novel method of integrating electromagnetic metasurface with conventional antenna is proposed. The theoretical analysis and practical implementation of this method are presented. Using this method, a novel antenna array is obtained by connecting partial unit cells of metasurface with transmission line and adopting coaxial excitations. In the radiation mode, the metasurface is excited and radiates effectively. Besides, the array has almost the same performance as the conventional array. In the scattering mode, this array demonstrates low in-band RCS due to the scattering cancellation of middle metasurface and other surrounding structures. Using this method, a 2 × 1 array, as an example, is designed and numerically analyzed. The results show that the array has the well-behaved radiation performance and low RCS property. The working principle of the proposed array is illustrated by investigating the current and resultant field. Further analysis also reveals the effecting law of metasurface unit cells in antenna's radiation and scattering performance. Therefore, flexible designs can be obtained to fit different requirements. Finally, experiments are conducted. And the good agreement between computations and measurements further verifies the validity of the proposed design. Moreover, the proposed method also features easy implementation and high integrity and can be extended to the designing of large scale array antennas.
-
Keywords:
- electromagnetic metasurface /
- array antenna /
- integration /
- low radar cross section
[1] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar
[2] 杨帆, 许慎恒, 刘骁, 杨雪, 潘笑天, 王敏, 肖钰, 李懋坤 2018 电波科学学报 33 256
Yang F, Xu S H, Liu X, Yang X, Pan X T, Wang M, Xiao Y, Li M K 2018 Chin. J. Radio Sci. 33 256
[3] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light:Sci. Appl. 3 e218Google Scholar
[4] Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2014 Appl. Phys. Lett. 105 18111
[5] Koziel S, Abdullah M 2021 IEEE Trans. Antennas Propag. 69 2028
[6] Zhang C, Gao J, Cao X Y, Li S J, Yang H H, Li T 2020 IEEE Trans. Antennas Propag. 68 3301Google Scholar
[7] Chen Q, Guo M, Sang D, Sun Z S, Fu Y Q 2019 IEEE Antennas Wirel. Propag. Lett. 18 1223Google Scholar
[8] Li T, Yang H H, Li Q, Zhang C, Han J F, Cong L L, Cao X Y, Gao J 2019 Opt. Mater. Express 9 1161Google Scholar
[9] Yang H H, Cao X Y, Yang F, Gao J, Xu S H, Li M K, Chen X B, Zhao Y, Zheng Y J, Li S J 2016 Sci. Rep. 6 35692Google Scholar
[10] Li L L, Cui T J, Ji W, Liu S, Ding J, Wan X, Li Y B, Jiang M H, Qiu C W, Zhang S 2017 Nat. Commun. 8 197Google Scholar
[11] Liu W, Chen Z N, Qing X M 2015 IEEE Trans. Antennas Propag. 63 3325Google Scholar
[12] Jia Y T, Liu Y, Guo Y J, Li K, Gong S X 2016 IEEE Trans. Antennas Propag. 64 179Google Scholar
[13] Guo W L, Chen K, Wang G M, Luo X Y, Feng Y J, Qiu C W 2020 IEEE Trans. Antennas Propag. 68 1426Google Scholar
[14] Chen K, Feng Y J, Monticone F, Zhao J M, Zhu B, Jiang T, Zhang L, Kim Y, Ding X M, Zhang S, Alu A, Qiu C W 2017 Adv. Mater. 29 1606422Google Scholar
[15] Jia Y T, Liu Y, Feng Y J, Zhou Z P 2020 IEEE Trans. Antennas Propag. 68 6516Google Scholar
[16] Liu Y, Li N, Jia Y T, Zhang W B, Zhou Z P 2019 IEEE Antennas Wirel. Propag. Lett. 18 492Google Scholar
[17] Al-Nuaimi M K T, Hong W, Whittow W G 2020 IEEE Antennas Wirel. Propag. Lett. 19 1048Google Scholar
[18] Yang H H, Li T, Xu L M, Cao X Y, Jidi L R, Guo Z X, Li P, Gao J 2021 IEEE Trans. Antennas Propag. 69 1239Google Scholar
[19] Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P D 2007 IEEE Trans. Antennas Propag. 55 3630Google Scholar
[20] Rajabalipanah H, Abdolali A 2019 IEEE Antennas Wirel. Propag. Lett. 18 1233Google Scholar
[21] Zhao Y, Cao X Y, Gao J, Yao X, Liu T, Li W Q, Li S J 2016 IEEE Trans. Antennas Propag. 64 2954Google Scholar
[22] Li K, Liu Y, Jia Y T, Guo Y J 2017 IEEE Trans. Antennas Propag. 65 4288Google Scholar
[23] Pan W B, Huang C, Chen P, Ma X L, Hu C G, Luo X G 2014 IEEE Trans. Antennas Propag. 62 945Google Scholar
[24] 杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强 2013 62 064103Google Scholar
Yang H H, Cao X Y, Gao J, Liu T, Ma J J, Yao X, Li W Q 2013 Acta Phys. Sin. 62 064103Google Scholar
[25] Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE Trans. Antennas Propag. 61 1479Google Scholar
[26] Yang H H, Cao X Y, Zheng Q R, Ma J J, Li W Q 2013 Radio Engineering 22 1275
[27] Tan Y, Yuan N C, Yang Y, Fu Y Q 2011 Electron. Lett. 47 1Google Scholar
[28] Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 61 1479
[29] Zheng Q, Guo C J, Ding J, Vandenbosch G A 2020 IEEE Trans. Antennas Propag. 69 3529
[30] Liu Y, Jia Y T, Zhang W B, Li F 2020 IEEE Trans. Antennas Propag. 68 3644Google Scholar
[31] Li T, Yang H H, Li Q, Jidi L R, Cao X Y, Gao J 2021 IEEE Trans. Antennas Propag 69 5325
[32] 郝彪, 杨宾锋, 高军, 曹祥玉, 杨欢欢, 李桐 2020 69 244101
Hao B, Yang B F, Gao J, Cao X Y, Yang H H, Li T 2020 Acta Phys. Sin. 69 244101
[33] Genovesi S, Costa F, Monorchio A 2014 IEEE Trans. Antennas Propag. 62 163Google Scholar
-
-
[1] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar
[2] 杨帆, 许慎恒, 刘骁, 杨雪, 潘笑天, 王敏, 肖钰, 李懋坤 2018 电波科学学报 33 256
Yang F, Xu S H, Liu X, Yang X, Pan X T, Wang M, Xiao Y, Li M K 2018 Chin. J. Radio Sci. 33 256
[3] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light:Sci. Appl. 3 e218Google Scholar
[4] Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2014 Appl. Phys. Lett. 105 18111
[5] Koziel S, Abdullah M 2021 IEEE Trans. Antennas Propag. 69 2028
[6] Zhang C, Gao J, Cao X Y, Li S J, Yang H H, Li T 2020 IEEE Trans. Antennas Propag. 68 3301Google Scholar
[7] Chen Q, Guo M, Sang D, Sun Z S, Fu Y Q 2019 IEEE Antennas Wirel. Propag. Lett. 18 1223Google Scholar
[8] Li T, Yang H H, Li Q, Zhang C, Han J F, Cong L L, Cao X Y, Gao J 2019 Opt. Mater. Express 9 1161Google Scholar
[9] Yang H H, Cao X Y, Yang F, Gao J, Xu S H, Li M K, Chen X B, Zhao Y, Zheng Y J, Li S J 2016 Sci. Rep. 6 35692Google Scholar
[10] Li L L, Cui T J, Ji W, Liu S, Ding J, Wan X, Li Y B, Jiang M H, Qiu C W, Zhang S 2017 Nat. Commun. 8 197Google Scholar
[11] Liu W, Chen Z N, Qing X M 2015 IEEE Trans. Antennas Propag. 63 3325Google Scholar
[12] Jia Y T, Liu Y, Guo Y J, Li K, Gong S X 2016 IEEE Trans. Antennas Propag. 64 179Google Scholar
[13] Guo W L, Chen K, Wang G M, Luo X Y, Feng Y J, Qiu C W 2020 IEEE Trans. Antennas Propag. 68 1426Google Scholar
[14] Chen K, Feng Y J, Monticone F, Zhao J M, Zhu B, Jiang T, Zhang L, Kim Y, Ding X M, Zhang S, Alu A, Qiu C W 2017 Adv. Mater. 29 1606422Google Scholar
[15] Jia Y T, Liu Y, Feng Y J, Zhou Z P 2020 IEEE Trans. Antennas Propag. 68 6516Google Scholar
[16] Liu Y, Li N, Jia Y T, Zhang W B, Zhou Z P 2019 IEEE Antennas Wirel. Propag. Lett. 18 492Google Scholar
[17] Al-Nuaimi M K T, Hong W, Whittow W G 2020 IEEE Antennas Wirel. Propag. Lett. 19 1048Google Scholar
[18] Yang H H, Li T, Xu L M, Cao X Y, Jidi L R, Guo Z X, Li P, Gao J 2021 IEEE Trans. Antennas Propag. 69 1239Google Scholar
[19] Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P D 2007 IEEE Trans. Antennas Propag. 55 3630Google Scholar
[20] Rajabalipanah H, Abdolali A 2019 IEEE Antennas Wirel. Propag. Lett. 18 1233Google Scholar
[21] Zhao Y, Cao X Y, Gao J, Yao X, Liu T, Li W Q, Li S J 2016 IEEE Trans. Antennas Propag. 64 2954Google Scholar
[22] Li K, Liu Y, Jia Y T, Guo Y J 2017 IEEE Trans. Antennas Propag. 65 4288Google Scholar
[23] Pan W B, Huang C, Chen P, Ma X L, Hu C G, Luo X G 2014 IEEE Trans. Antennas Propag. 62 945Google Scholar
[24] 杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强 2013 62 064103Google Scholar
Yang H H, Cao X Y, Gao J, Liu T, Ma J J, Yao X, Li W Q 2013 Acta Phys. Sin. 62 064103Google Scholar
[25] Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE Trans. Antennas Propag. 61 1479Google Scholar
[26] Yang H H, Cao X Y, Zheng Q R, Ma J J, Li W Q 2013 Radio Engineering 22 1275
[27] Tan Y, Yuan N C, Yang Y, Fu Y Q 2011 Electron. Lett. 47 1Google Scholar
[28] Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 61 1479
[29] Zheng Q, Guo C J, Ding J, Vandenbosch G A 2020 IEEE Trans. Antennas Propag. 69 3529
[30] Liu Y, Jia Y T, Zhang W B, Li F 2020 IEEE Trans. Antennas Propag. 68 3644Google Scholar
[31] Li T, Yang H H, Li Q, Jidi L R, Cao X Y, Gao J 2021 IEEE Trans. Antennas Propag 69 5325
[32] 郝彪, 杨宾锋, 高军, 曹祥玉, 杨欢欢, 李桐 2020 69 244101
Hao B, Yang B F, Gao J, Cao X Y, Yang H H, Li T 2020 Acta Phys. Sin. 69 244101
[33] Genovesi S, Costa F, Monorchio A 2014 IEEE Trans. Antennas Propag. 62 163Google Scholar
计量
- 文章访问数: 6359
- PDF下载量: 184
- 被引次数: 0