搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁超构表面与天线结构一体化的低RCS阵列

冯奎胜 李娜 杨欢欢

引用本文:
Citation:

电磁超构表面与天线结构一体化的低RCS阵列

冯奎胜, 李娜, 杨欢欢

A novel low-RCS antenna array based on integration of electromagnetic metasurface and conventional antenna

Feng Kui-Sheng, Li Na, Yang Huan-Huan
PDF
HTML
导出引用
  • 提出一种电磁超构表面与天线一体化设计以实现低散射阵列的新方法. 该方法利用传输线将超构表面部分单元串联, 并采用同轴馈电激励, 以此得到新型天线阵列, 该阵列的辐射性能和传统阵列几乎相同; 当外来雷达波照射该阵列时, 利用超构表面和其周围天线结构散射场的差异, 将能量在空间重新分配, 从而实现天线工作频带内的雷达散射截面(radar cross section, RCS)减缩. 基于该方法, 以2 × 1阵列为例, 构建了天线模型, 数值分析了其性能, 验证了该阵列的良好辐射和低RCS特征, 并详细阐述了天线的工作机理, 进一步的分析还揭示了超构表面结构对天线辐射和散射性能的影响规律. 遵循该规律, 可以灵活设计满足需求的天线阵列. 该方法不仅简单易行、集成度高, 还可以拓展至更大规模的阵列天线设计.
    Aiming at obtaining low scattering antenna array, in this paper a novel method of integrating electromagnetic metasurface with conventional antenna is proposed. The theoretical analysis and practical implementation of this method are presented. Using this method, a novel antenna array is obtained by connecting partial unit cells of metasurface with transmission line and adopting coaxial excitations. In the radiation mode, the metasurface is excited and radiates effectively. Besides, the array has almost the same performance as the conventional array. In the scattering mode, this array demonstrates low in-band RCS due to the scattering cancellation of middle metasurface and other surrounding structures. Using this method, a 2 × 1 array, as an example, is designed and numerically analyzed. The results show that the array has the well-behaved radiation performance and low RCS property. The working principle of the proposed array is illustrated by investigating the current and resultant field. Further analysis also reveals the effecting law of metasurface unit cells in antenna's radiation and scattering performance. Therefore, flexible designs can be obtained to fit different requirements. Finally, experiments are conducted. And the good agreement between computations and measurements further verifies the validity of the proposed design. Moreover, the proposed method also features easy implementation and high integrity and can be extended to the designing of large scale array antennas.
      通信作者: 杨欢欢, jianye8901@126.com
    • 基金项目: 国家自然科学基金(批准号: 61801508, 61701523, 61671464)、陕西省自然科学基础研究计划(批准号: 2019JQ-103, 2020JM-350, 20200108, 2020022)和博士后创新基金(批准号: BX20180375, 2019M653960)资助的课题
      Corresponding author: Yang Huan-Huan, jianye8901@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61801508, 61701523, 61671464), the Natural Science Basic Research Program of Shaanxi Province, China (Grant Nos. 2019JQ-103, 2020JM-350, 20200108, 2020022), and the Postdoctoral Innovative Talents Support Program of China (Grant Nos. BX20180375, 2019M653960)
    [1]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [2]

    杨帆, 许慎恒, 刘骁, 杨雪, 潘笑天, 王敏, 肖钰, 李懋坤 2018 电波科学学报 33 256

    Yang F, Xu S H, Liu X, Yang X, Pan X T, Wang M, Xiao Y, Li M K 2018 Chin. J. Radio Sci. 33 256

    [3]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light:Sci. Appl. 3 e218Google Scholar

    [4]

    Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2014 Appl. Phys. Lett. 105 18111

    [5]

    Koziel S, Abdullah M 2021 IEEE Trans. Antennas Propag. 69 2028

    [6]

    Zhang C, Gao J, Cao X Y, Li S J, Yang H H, Li T 2020 IEEE Trans. Antennas Propag. 68 3301Google Scholar

    [7]

    Chen Q, Guo M, Sang D, Sun Z S, Fu Y Q 2019 IEEE Antennas Wirel. Propag. Lett. 18 1223Google Scholar

    [8]

    Li T, Yang H H, Li Q, Zhang C, Han J F, Cong L L, Cao X Y, Gao J 2019 Opt. Mater. Express 9 1161Google Scholar

    [9]

    Yang H H, Cao X Y, Yang F, Gao J, Xu S H, Li M K, Chen X B, Zhao Y, Zheng Y J, Li S J 2016 Sci. Rep. 6 35692Google Scholar

    [10]

    Li L L, Cui T J, Ji W, Liu S, Ding J, Wan X, Li Y B, Jiang M H, Qiu C W, Zhang S 2017 Nat. Commun. 8 197Google Scholar

    [11]

    Liu W, Chen Z N, Qing X M 2015 IEEE Trans. Antennas Propag. 63 3325Google Scholar

    [12]

    Jia Y T, Liu Y, Guo Y J, Li K, Gong S X 2016 IEEE Trans. Antennas Propag. 64 179Google Scholar

    [13]

    Guo W L, Chen K, Wang G M, Luo X Y, Feng Y J, Qiu C W 2020 IEEE Trans. Antennas Propag. 68 1426Google Scholar

    [14]

    Chen K, Feng Y J, Monticone F, Zhao J M, Zhu B, Jiang T, Zhang L, Kim Y, Ding X M, Zhang S, Alu A, Qiu C W 2017 Adv. Mater. 29 1606422Google Scholar

    [15]

    Jia Y T, Liu Y, Feng Y J, Zhou Z P 2020 IEEE Trans. Antennas Propag. 68 6516Google Scholar

    [16]

    Liu Y, Li N, Jia Y T, Zhang W B, Zhou Z P 2019 IEEE Antennas Wirel. Propag. Lett. 18 492Google Scholar

    [17]

    Al-Nuaimi M K T, Hong W, Whittow W G 2020 IEEE Antennas Wirel. Propag. Lett. 19 1048Google Scholar

    [18]

    Yang H H, Li T, Xu L M, Cao X Y, Jidi L R, Guo Z X, Li P, Gao J 2021 IEEE Trans. Antennas Propag. 69 1239Google Scholar

    [19]

    Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P D 2007 IEEE Trans. Antennas Propag. 55 3630Google Scholar

    [20]

    Rajabalipanah H, Abdolali A 2019 IEEE Antennas Wirel. Propag. Lett. 18 1233Google Scholar

    [21]

    Zhao Y, Cao X Y, Gao J, Yao X, Liu T, Li W Q, Li S J 2016 IEEE Trans. Antennas Propag. 64 2954Google Scholar

    [22]

    Li K, Liu Y, Jia Y T, Guo Y J 2017 IEEE Trans. Antennas Propag. 65 4288Google Scholar

    [23]

    Pan W B, Huang C, Chen P, Ma X L, Hu C G, Luo X G 2014 IEEE Trans. Antennas Propag. 62 945Google Scholar

    [24]

    杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强 2013 62 064103Google Scholar

    Yang H H, Cao X Y, Gao J, Liu T, Ma J J, Yao X, Li W Q 2013 Acta Phys. Sin. 62 064103Google Scholar

    [25]

    Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE Trans. Antennas Propag. 61 1479Google Scholar

    [26]

    Yang H H, Cao X Y, Zheng Q R, Ma J J, Li W Q 2013 Radio Engineering 22 1275

    [27]

    Tan Y, Yuan N C, Yang Y, Fu Y Q 2011 Electron. Lett. 47 1Google Scholar

    [28]

    Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 61 1479

    [29]

    Zheng Q, Guo C J, Ding J, Vandenbosch G A 2020 IEEE Trans. Antennas Propag. 69 3529

    [30]

    Liu Y, Jia Y T, Zhang W B, Li F 2020 IEEE Trans. Antennas Propag. 68 3644Google Scholar

    [31]

    Li T, Yang H H, Li Q, Jidi L R, Cao X Y, Gao J 2021 IEEE Trans. Antennas Propag 69 5325

    [32]

    郝彪, 杨宾锋, 高军, 曹祥玉, 杨欢欢, 李桐 2020 69 244101

    Hao B, Yang B F, Gao J, Cao X Y, Yang H H, Li T 2020 Acta Phys. Sin. 69 244101

    [33]

    Genovesi S, Costa F, Monorchio A 2014 IEEE Trans. Antennas Propag. 62 163Google Scholar

  • 图 1  天线结构示意图 (a), (b)超构表面与天线阵列一体化侧视图与俯视图; (c)传统天线阵列俯视图

    Fig. 1.  Configurations of antennas: (a) Side view and (b) top view of metasurface antenna array; (c) top view of conventional antenna array.

    图 2  天线阵列辐射性能对比 (a)反射系数; (b) E面方向图; (c) H面方向图

    Fig. 2.  Radiation performance comparison of the antenna arrays: (a) Reflection coefficients; (b) E-plane radiation patterns; (c) H-plane radiation patterns.

    图 3  6.3 GHz天线阵列表面电流 (a)新提出天线阵; (b)参考天线阵

    Fig. 3.  Surface current distributions at 6.3 GHz: (a) Proposed antenna array; (b) reference antenna array.

    图 4  天线阵列RCS对比

    Fig. 4.  RCS comparison of the antenna arrays.

    图 5  天线阵列散射方向图对比 (a)—(d)参考天线阵; (e)—(h)新提出天线阵

    Fig. 5.  Scattering patterns comparison of the antenna arrays: (a)−(d) Reference antenna array; (e)−(h) the proposed antenna array.

    图 6  不同极化平面波照射下天线阵列在6.3 GHz的表面电流 (a), (b) x极化; (c), (d) y极化

    Fig. 6.  Surface current distributions at 6.3 GHz of the two antennas under different polarized plane waves: (a), (b) x polarization; (c), (d) y polarization.

    图 7  dx对天线性能的影响 (a)反射系数; (b) x极化RCS; (c) y极化RCS

    Fig. 7.  Effects of dx on antenna's performance: (a) Reflection coefficient; (b) RCS under x polarized plane wave; (c) RCS under y polarized plane wave.

    图 8  dy对天线性能的影响 (a)反射系数; (b) x极化RCS; (c) y极化RCS

    Fig. 8.  Effects of dy on antenna's performance: (a) Reflection coefficient; (b) RCS under x polarized plane wave; (c) RCS under y polarized plane wave.

    图 9  w1对天线性能的影响 (a)反射系数; (b) x极化RCS; (c) y极化RCS

    Fig. 9.  Effects of w1 on antenna's performance: (a) Reflection coefficient; (b) RCS under x polarized plane wave; (c) RCS under y polarized plane wave.

    图 10  新提出天线阵列实物及散射测试系统

    Fig. 10.  Picture of the proposed antenna array and the scheme of scattering test.

    图 11  实测天线阵的|S11|曲线

    Fig. 11.  Measured |S11| of the proposed antenna array.

    图 12  6.5 GHz实测天线阵方向图 (a) E面; (b) H

    Fig. 12.  Measured radiation patterns at 6.5 GHz: (a) E plane; (b) H plane.

    图 13  天线阵单站RCS减缩曲线

    Fig. 13.  Monostatic RCS reduction of the proposed antenna array.

    Baidu
  • [1]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [2]

    杨帆, 许慎恒, 刘骁, 杨雪, 潘笑天, 王敏, 肖钰, 李懋坤 2018 电波科学学报 33 256

    Yang F, Xu S H, Liu X, Yang X, Pan X T, Wang M, Xiao Y, Li M K 2018 Chin. J. Radio Sci. 33 256

    [3]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light:Sci. Appl. 3 e218Google Scholar

    [4]

    Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2014 Appl. Phys. Lett. 105 18111

    [5]

    Koziel S, Abdullah M 2021 IEEE Trans. Antennas Propag. 69 2028

    [6]

    Zhang C, Gao J, Cao X Y, Li S J, Yang H H, Li T 2020 IEEE Trans. Antennas Propag. 68 3301Google Scholar

    [7]

    Chen Q, Guo M, Sang D, Sun Z S, Fu Y Q 2019 IEEE Antennas Wirel. Propag. Lett. 18 1223Google Scholar

    [8]

    Li T, Yang H H, Li Q, Zhang C, Han J F, Cong L L, Cao X Y, Gao J 2019 Opt. Mater. Express 9 1161Google Scholar

    [9]

    Yang H H, Cao X Y, Yang F, Gao J, Xu S H, Li M K, Chen X B, Zhao Y, Zheng Y J, Li S J 2016 Sci. Rep. 6 35692Google Scholar

    [10]

    Li L L, Cui T J, Ji W, Liu S, Ding J, Wan X, Li Y B, Jiang M H, Qiu C W, Zhang S 2017 Nat. Commun. 8 197Google Scholar

    [11]

    Liu W, Chen Z N, Qing X M 2015 IEEE Trans. Antennas Propag. 63 3325Google Scholar

    [12]

    Jia Y T, Liu Y, Guo Y J, Li K, Gong S X 2016 IEEE Trans. Antennas Propag. 64 179Google Scholar

    [13]

    Guo W L, Chen K, Wang G M, Luo X Y, Feng Y J, Qiu C W 2020 IEEE Trans. Antennas Propag. 68 1426Google Scholar

    [14]

    Chen K, Feng Y J, Monticone F, Zhao J M, Zhu B, Jiang T, Zhang L, Kim Y, Ding X M, Zhang S, Alu A, Qiu C W 2017 Adv. Mater. 29 1606422Google Scholar

    [15]

    Jia Y T, Liu Y, Feng Y J, Zhou Z P 2020 IEEE Trans. Antennas Propag. 68 6516Google Scholar

    [16]

    Liu Y, Li N, Jia Y T, Zhang W B, Zhou Z P 2019 IEEE Antennas Wirel. Propag. Lett. 18 492Google Scholar

    [17]

    Al-Nuaimi M K T, Hong W, Whittow W G 2020 IEEE Antennas Wirel. Propag. Lett. 19 1048Google Scholar

    [18]

    Yang H H, Li T, Xu L M, Cao X Y, Jidi L R, Guo Z X, Li P, Gao J 2021 IEEE Trans. Antennas Propag. 69 1239Google Scholar

    [19]

    Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P D 2007 IEEE Trans. Antennas Propag. 55 3630Google Scholar

    [20]

    Rajabalipanah H, Abdolali A 2019 IEEE Antennas Wirel. Propag. Lett. 18 1233Google Scholar

    [21]

    Zhao Y, Cao X Y, Gao J, Yao X, Liu T, Li W Q, Li S J 2016 IEEE Trans. Antennas Propag. 64 2954Google Scholar

    [22]

    Li K, Liu Y, Jia Y T, Guo Y J 2017 IEEE Trans. Antennas Propag. 65 4288Google Scholar

    [23]

    Pan W B, Huang C, Chen P, Ma X L, Hu C G, Luo X G 2014 IEEE Trans. Antennas Propag. 62 945Google Scholar

    [24]

    杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强 2013 62 064103Google Scholar

    Yang H H, Cao X Y, Gao J, Liu T, Ma J J, Yao X, Li W Q 2013 Acta Phys. Sin. 62 064103Google Scholar

    [25]

    Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE Trans. Antennas Propag. 61 1479Google Scholar

    [26]

    Yang H H, Cao X Y, Zheng Q R, Ma J J, Li W Q 2013 Radio Engineering 22 1275

    [27]

    Tan Y, Yuan N C, Yang Y, Fu Y Q 2011 Electron. Lett. 47 1Google Scholar

    [28]

    Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 61 1479

    [29]

    Zheng Q, Guo C J, Ding J, Vandenbosch G A 2020 IEEE Trans. Antennas Propag. 69 3529

    [30]

    Liu Y, Jia Y T, Zhang W B, Li F 2020 IEEE Trans. Antennas Propag. 68 3644Google Scholar

    [31]

    Li T, Yang H H, Li Q, Jidi L R, Cao X Y, Gao J 2021 IEEE Trans. Antennas Propag 69 5325

    [32]

    郝彪, 杨宾锋, 高军, 曹祥玉, 杨欢欢, 李桐 2020 69 244101

    Hao B, Yang B F, Gao J, Cao X Y, Yang H H, Li T 2020 Acta Phys. Sin. 69 244101

    [33]

    Genovesi S, Costa F, Monorchio A 2014 IEEE Trans. Antennas Propag. 62 163Google Scholar

  • [1] 魏巍, 管峰, 方鑫. 基于带隙阻波隔振的超材料梁吸隔振一体化设计方法.  , 2024, 73(22): 224602. doi: 10.7498/aps.73.20241135
    [2] 李桐, 杨欢欢, 李奇, 廖嘉伟, 高坤, 季轲峰, 曹祥玉. 基于共享孔径技术的低RCS电磁超构表面天线设计.  , 2024, 73(12): 124101. doi: 10.7498/aps.73.20240142
    [3] 冯奎胜, 李娜, 李桐. 有源器件混合集成的超薄超宽带可调雷达吸波体.  , 2022, 71(3): 034101. doi: 10.7498/aps.71.20211254
    [4] 冯奎胜, 李娜, 李桐. 有源器件混合集成的超薄超宽带可调雷达吸波体.  , 2021, (): . doi: 10.7498/aps.70.20211254
    [5] 宋扬, 杨西斌, 闫冰, 王驰, 孙建美, 熊大曦. 基于一体化微球物镜的超分辨成像系统.  , 2020, 69(13): 134201. doi: 10.7498/aps.69.20191994
    [6] 崔岸婧, 李道京, 周凯, 王宇, 洪峻. 阵列结构下的低频信号合成方法研究.  , 2020, 69(19): 194101. doi: 10.7498/aps.69.20200501
    [7] 郝彪, 杨宾锋, 高军, 曹祥玉, 杨欢欢, 李桐. 一种编码式低雷达散射截面超表面天线阵列设计.  , 2020, 69(24): 244101. doi: 10.7498/aps.69.20200978
    [8] 周天益. 基于随机场照射的最优微波成像.  , 2019, 68(5): 055201. doi: 10.7498/aps.68.20182122
    [9] 陈巍, 高军, 张广, 曹祥玉, 杨欢欢, 郑月军. 一种编码式宽带多功能反射屏.  , 2017, 66(6): 064203. doi: 10.7498/aps.66.064203
    [10] 李文惠, 张介秋, 屈绍波, 袁航盈, 沈杨, 王冬骏, 过勐超. 基于宽带吸波体的微带天线雷达散射截面缩减设计.  , 2015, 64(8): 084101. doi: 10.7498/aps.64.084101
    [11] 丛丽丽, 付强, 曹祥玉, 高军, 宋涛, 李文强, 赵一, 郑月军. 一种高增益低雷达散射截面的新型圆极化微带天线设计.  , 2015, 64(22): 224219. doi: 10.7498/aps.64.224219
    [12] 李文强, 曹祥玉, 高军, 郑月军, 杨欢欢, 李思佳, 赵一. 共享孔径人工电磁媒质设计及其在高增益低雷达散射截面天线中的应用.  , 2015, 64(5): 054101. doi: 10.7498/aps.64.054101
    [13] 巴斌, 刘国春, 李韬, 林禹丞, 王瑜. 基于哈达玛积扩展子空间的到达时间和波达方向联合估计.  , 2015, 64(7): 078403. doi: 10.7498/aps.64.078403
    [14] 李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛. 基于超材料吸波体的低雷达散射截面波导缝隙阵列天线.  , 2015, 64(9): 094102. doi: 10.7498/aps.64.094102
    [15] 郑月军, 高军, 曹祥玉, 李思佳, 杨欢欢, 李文强, 赵一, 刘红喜. 覆盖X和Ku波段的低雷达散射截面人工磁导体反射屏.  , 2015, 64(2): 024219. doi: 10.7498/aps.64.024219
    [16] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证.  , 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [17] 郑月军, 高军, 曹祥玉, 郑秋容, 李思佳, 李文强, 杨群. 一种兼具宽带增益改善和宽带、宽角度低雷达散射截面的微带天线.  , 2014, 63(22): 224102. doi: 10.7498/aps.63.224102
    [18] 李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强. 宽带超薄完美吸波体设计及在圆极化倾斜波束天线雷达散射截面缩减中的应用研究.  , 2013, 62(12): 124101. doi: 10.7498/aps.62.124101
    [19] 杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强. 基于超材料吸波体的低雷达散射截面微带天线设计.  , 2013, 62(6): 064103. doi: 10.7498/aps.62.064103
    [20] 聂在平, 王浩刚. 含腔电大尺寸导体目标电磁散射的一体化数值模拟.  , 2003, 52(12): 3035-3042. doi: 10.7498/aps.52.3035
计量
  • 文章访问数:  6359
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-20
  • 修回日期:  2021-05-14
  • 上网日期:  2021-09-23
  • 刊出日期:  2021-10-05

/

返回文章
返回
Baidu
map