Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultra-thin broadband flat metasurface to focus electromagnetic waves and its application in high-gain antenna

Hou Hai-Sheng Wang Guang-Ming Li Hai-Peng Cai Tong Guo Wen-Long

Citation:

Ultra-thin broadband flat metasurface to focus electromagnetic waves and its application in high-gain antenna

Hou Hai-Sheng, Wang Guang-Ming, Li Hai-Peng, Cai Tong, Guo Wen-Long
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The phase gradient metasurface has strong abilities to manipulate electromagnetic waves on a subwavelength scale and has a potential to enhance the antenna gain. Based on the single multi-resonance metallic patch srtucture, we propose a new kind of ultra-thin broadband unit cell to manipulate electromagnetic waves and enhance the gain. It has been demonstrated that anomalous reflection can be achieved by utilizing the magnetic resonance between metallic patch and ground plane. Moreover, it is believed that resonance with low quality factor (Q factor) is useful in extending the working bandwidth. In order to extend the bandwidth of phase modulation, it is necessary to design a kind of low-Q unit cell. Besides, we need to extend the phase shift to cover the entire range [0, 360] to achieve the focusing effect. Thus we design a suitable symmetrical unit cell composed of ring and cross metallic patterns to control the phase of reflected waves. The symmetrical structure is useful for decreasing the Q factor so as to get a kind of low-Q unit cell. Theoretically, ring and cross metallic patch can be regarded as multi-resonance unit cells, which can cover the entire scope [0, 360]. The unit cell operates at 15-18 GHz with a thickness of 1 mm and the sides of 0.3 0( 0=20 mm). Furthermore, we design a phase gradient metasurface composed of the designed unit cell to verify the broadband anomalous reflection and focusing effects in CST Microwave Studio; the effect can be clearly illustrated in the simulation results obtained at 15-18 GHz. Due to the successful conversion from plane wave to quasi-spherical wave, we can place the Vivaldi antenna at the focal point of the metasurface as a feed source to transform the quasi-spherical wave to plane wave to enhance antenna gain. The simulation results are in good agreement with the theoretical analysis. Meanwhile, the designed metasurface and Vivaldi antenna have been fabricated and applied to enhance the gain of Vivaldi antenna. Both simulation and test results show that the peak gain has been averagely enhanced by 11 dB during the -1 dB gain bandwidth of 15-18 GHz and the fractional bandwidth is 18.2%. Moreover, due to the thin thickness, light weight and broad band, the designed unit cell may open up a new route for the applications of phase gradient metasurfaces in the microwave band region, and may also used as an alternative of high-gain antenna.
      Corresponding author: Wang Guang-Ming, wgming01@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61372034).
    [1]

    Guo F, Du H L, Qu S B, Xia S, Xu Z, Zhao J F, Zhang H M 2015 Acta Phys. Sin. 64 077801 (in Chinese) [郭飞, 杜红亮, 屈绍波, 夏颂, 徐卓, 赵建峰, 张红梅 2015 64 077801]

    [2]

    Liu G C, Li C, Fang G Y 2015 Chin. Phys. B 24 14101

    [3]

    Wu S, Huang X J, Xiao B X, Jin Y, Yang H L 2015 Chin. Phys. B 23 127805

    [4]

    Cai T, Wang G M, Liang J G, Zhuang Y Q 2014 Chin. Phys. Lett. 31 084101

    [5]

    Cai T, Wang G M, Zhang X F, Wang Y W, Zong B F, Xu H X 2015 IEEE Trans. Antennas Propag. 63 2306

    [6]

    Cai T, Wang G M, Zhang X F, Shi J P 2015 IEEE Antennas Wirel. Propag. Lett. 14 1072

    [7]

    Francesco M, Andrea A 2014 Chin. Phys. B 23 047809

    [8]

    Ni X, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M 2012 Science 335 427

    [9]

    Farmahini-Farahani M, Mosallaei H 2013 Opt. Lett. 38 462

    [10]

    Li X, Xiao S Y, Cai B G, He Q, Cui T J, Zhou L 2012 Opt. Lett. 37 4940

    [11]

    Wan X, Li Y B, Cai B G, Cui T J 2014 Appl. Phys. Lett. 105 151604

    [12]

    Luo J, Yu H L, Song M W, Zhang Z J 2014 Opt. Lett. 39 2229

    [13]

    Yu N F, Genevet P, Kats A M, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [14]

    Pu M B, Chen P, Wang C T, Wang Y Q, Zhao Z Y, Hu C G, Huang C, Luo X G 2013 AIP Advances 3 052136

    [15]

    Wei Z Y, Cao Y, Su X P, Gong Z J, Long Y, Li H Q 2013 Opt. Express 21 010739

    [16]

    Wang J F, Qu S B, Ma H, Xu Z, Zhang A X, Zhou H, Chen H Y, Li Y F 2012 Appl. Phys. Lett. 101 201104

    [17]

    Wang W S, Zhang L W, Zhang Y W, Fang K 2013 Acta Phys. Sin. 2013 62 024203 (in Chinese) [王五松, 张利伟, 张冶文, 方恺 2013 62 024203]

    [18]

    Wang J F, Qu S B, Ma H, Xu Z, Zhang A X, Zhou H, Chen H Y, Li Y F 2012 Appl. Phys. Lett. 101 201104

    [19]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Wu X, Xu Z, Zhang A X 2015 Acta Phys. Sin. 64 094101 (in Chinese) [李永峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学 2015 64 094101]

    [20]

    Huang L L, Chen X Z, Bai B F, Tan Q F, Jin G F, Zentgraf T, Zhang S 2013 Light: Science Applications 2 e70

    [21]

    Huang L L, Chen X Z, Mhlenbernd H, Li G X, Bai B F, Tan Q F, Jin G F, Zentgraf T, Zhang S 2012 Nano Lett. 12 5750

    [22]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Pang Y Q, Xu Z, Zhang A X 2015 J. Appl. Phys. 117 044501

    [23]

    Wang J F, Qu S B, Xu Z, Ma H, Wang X H, Huang D Q, Li Y F 2012 Photon. Nanostruct. Fundam. Applic. 10 540

    [24]

    Aieta F, Genevent P, Kats M A, Yu N F, Blanchard R, Gaburro Z, Capasso F 2012 Nano Lett. 12 4932

    [25]

    Pors A, Nielsen M G, Eriksen R L, Bozhevolnyi S I 2013 Nano Lett. 13 829

    [26]

    Saeidi C, van der Weide D 2014 Appl. Phys. Lett. 105 053107

    [27]

    Kang M, Feng T H, Wang H T, Li J S 2012 Opt. Express 20 15882

  • [1]

    Guo F, Du H L, Qu S B, Xia S, Xu Z, Zhao J F, Zhang H M 2015 Acta Phys. Sin. 64 077801 (in Chinese) [郭飞, 杜红亮, 屈绍波, 夏颂, 徐卓, 赵建峰, 张红梅 2015 64 077801]

    [2]

    Liu G C, Li C, Fang G Y 2015 Chin. Phys. B 24 14101

    [3]

    Wu S, Huang X J, Xiao B X, Jin Y, Yang H L 2015 Chin. Phys. B 23 127805

    [4]

    Cai T, Wang G M, Liang J G, Zhuang Y Q 2014 Chin. Phys. Lett. 31 084101

    [5]

    Cai T, Wang G M, Zhang X F, Wang Y W, Zong B F, Xu H X 2015 IEEE Trans. Antennas Propag. 63 2306

    [6]

    Cai T, Wang G M, Zhang X F, Shi J P 2015 IEEE Antennas Wirel. Propag. Lett. 14 1072

    [7]

    Francesco M, Andrea A 2014 Chin. Phys. B 23 047809

    [8]

    Ni X, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M 2012 Science 335 427

    [9]

    Farmahini-Farahani M, Mosallaei H 2013 Opt. Lett. 38 462

    [10]

    Li X, Xiao S Y, Cai B G, He Q, Cui T J, Zhou L 2012 Opt. Lett. 37 4940

    [11]

    Wan X, Li Y B, Cai B G, Cui T J 2014 Appl. Phys. Lett. 105 151604

    [12]

    Luo J, Yu H L, Song M W, Zhang Z J 2014 Opt. Lett. 39 2229

    [13]

    Yu N F, Genevet P, Kats A M, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [14]

    Pu M B, Chen P, Wang C T, Wang Y Q, Zhao Z Y, Hu C G, Huang C, Luo X G 2013 AIP Advances 3 052136

    [15]

    Wei Z Y, Cao Y, Su X P, Gong Z J, Long Y, Li H Q 2013 Opt. Express 21 010739

    [16]

    Wang J F, Qu S B, Ma H, Xu Z, Zhang A X, Zhou H, Chen H Y, Li Y F 2012 Appl. Phys. Lett. 101 201104

    [17]

    Wang W S, Zhang L W, Zhang Y W, Fang K 2013 Acta Phys. Sin. 2013 62 024203 (in Chinese) [王五松, 张利伟, 张冶文, 方恺 2013 62 024203]

    [18]

    Wang J F, Qu S B, Ma H, Xu Z, Zhang A X, Zhou H, Chen H Y, Li Y F 2012 Appl. Phys. Lett. 101 201104

    [19]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Wu X, Xu Z, Zhang A X 2015 Acta Phys. Sin. 64 094101 (in Chinese) [李永峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学 2015 64 094101]

    [20]

    Huang L L, Chen X Z, Bai B F, Tan Q F, Jin G F, Zentgraf T, Zhang S 2013 Light: Science Applications 2 e70

    [21]

    Huang L L, Chen X Z, Mhlenbernd H, Li G X, Bai B F, Tan Q F, Jin G F, Zentgraf T, Zhang S 2012 Nano Lett. 12 5750

    [22]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Pang Y Q, Xu Z, Zhang A X 2015 J. Appl. Phys. 117 044501

    [23]

    Wang J F, Qu S B, Xu Z, Ma H, Wang X H, Huang D Q, Li Y F 2012 Photon. Nanostruct. Fundam. Applic. 10 540

    [24]

    Aieta F, Genevent P, Kats M A, Yu N F, Blanchard R, Gaburro Z, Capasso F 2012 Nano Lett. 12 4932

    [25]

    Pors A, Nielsen M G, Eriksen R L, Bozhevolnyi S I 2013 Nano Lett. 13 829

    [26]

    Saeidi C, van der Weide D 2014 Appl. Phys. Lett. 105 053107

    [27]

    Kang M, Feng T H, Wang H T, Li J S 2012 Opt. Express 20 15882

  • [1] Feng Kui-Sheng, Li Na, Li Tong. Ultra-thin ultra-wideband tunable radar absorber based on hybrid incorporation of active devices. Acta Physica Sinica, 2022, 71(3): 034101. doi: 10.7498/aps.71.20211254
    [2] Qin Zhao-Fu, Chen Hao, Hu Tao-Zheng, Chen Zhuo, Wang Zhen-Lin. Fundamental wave and second-harmonic focusing based on guided wave-driven phase-change materials metasurfaces. Acta Physica Sinica, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [3] Gao Xi, Tang Li-Guang. Wideband and high efficiency orbital angular momentum generator based on bi-layer metasurface. Acta Physica Sinica, 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [4] Ultra-thin, ultra-wideband tunable radar absorber based on hybrid incorporation of active devices. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211254
    [5] Fundamental wave and second-harmonic focusing based on guided wave-driven phase-change materials metasurfaces. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211596
    [6] Liu Kang, He Tao, Liu Tao, Li Guo-Qing, Tian Bo, Wang Jia-Yi, Yang Shu-Ming. Effect of laser illumination conditions on focusing performance of super-oscillatory lens. Acta Physica Sinica, 2020, 69(18): 184215. doi: 10.7498/aps.69.20200577
    [7] Zhou Lu, Zhao Guo-Zhong, Li Xiao-Nan. Broadband terahertz vortex beam generation based on metasurface of double-split resonant rings. Acta Physica Sinica, 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [8] Gao Qiang, Wang Xiao-Hua, Wang Bing-Zhong. Far-field super-resolution imaging based on wideband stereo-metalens. Acta Physica Sinica, 2018, 67(9): 094101. doi: 10.7498/aps.67.20172608
    [9] Ning Ren-Xia, Bao Jie, Jiao Zheng. Wide band electromagnetically induced transparency in graphene metasurface of composite structure. Acta Physica Sinica, 2017, 66(10): 100202. doi: 10.7498/aps.66.100202
    [10] Li Tang-Jing, Liang Jian-Gang, Li Hai-Peng, Niu Xue-Bin, Liu Ya-Qiao. Broadband circularly polarized high-gain antenna design based on linear-to-circular polarization conversion focusing metasurface. Acta Physica Sinica, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [11] Han Jiang-Feng, Cao Xiang-Yu, Gao Jun, Li Si-Jia, Zhang Chen. Design of broadband reflective 90 polarization rotator based on metamaterial. Acta Physica Sinica, 2016, 65(4): 044201. doi: 10.7498/aps.65.044201
    [12] Li Tang-Jing, Liang Jian-Gang, Li Hai-Peng. Broadband circularly polarized high-gain antenna design based on single-layer reflecting metasurface. Acta Physica Sinica, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [13] Jiang Zhong-Jun, Liu Jian-Jun. Progress in far-field focusing and imaging with super-oscillation. Acta Physica Sinica, 2016, 65(23): 234203. doi: 10.7498/aps.65.234203
    [14] Guo Fei, Du Hong-Liang, Qu Shao-Bo, Xia Song, Xu Zhuo, Zhao Jian-Feng, Zhang Hong-Mei. Design and fabrication of a broadband metamaterial absorber based on a dielectric and magnetic hybrid substrate. Acta Physica Sinica, 2015, 64(7): 077801. doi: 10.7498/aps.64.077801
    [15] Li Jia-Ming, Tang Peng, Wang Jia-Jian, Huang Tao, Lin Feng, Fang Zhe-Yu, Zhu Xing. Focusing surface plasmon polaritons in archimedes' spiral nanostructure. Acta Physica Sinica, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [16] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Wu Xiang, Xu Zhuo, Zhang An-Xue. Design and verification of a two-dimensional wide band phase-gradient metasurface. Acta Physica Sinica, 2015, 64(9): 094101. doi: 10.7498/aps.64.094101
    [17] Yang Huan-Huan, Cao Xiang-Yu, Gao Jun, Liu Tao, Li Si-Jia, Zhao Yi, Yuan Zi-Dong, Zhang Hao. Broadband low-RCS metamaterial absorber based on electromagnetic resonance separation. Acta Physica Sinica, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [18] Wang Ying, Cheng Yong-Zhi, Nie Yan, Gong Rong-Zhou. Design and experiments of low-frequency broadband metamaterial absorber based on lumped elements. Acta Physica Sinica, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [19] Li Si-Jia, Cao Xiang-Yu, Gao Jun, Zheng Qiu-Rong, Zhao Yi, Yang Qun. Design of ultrathin broadband perfect metamaterial absorber with low radar cross section. Acta Physica Sinica, 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [20] Zhang Qing-Bin, Lan Peng-Fei, Hong Wei-Yi, Liao Qing, Yang Zhen-Yu, Lu Pei-Xiang. The effect of controlling laser field on broadband suppercontinuum generation. Acta Physica Sinica, 2009, 58(7): 4908-4913. doi: 10.7498/aps.58.4908
Metrics
  • Abstract views:  7796
  • PDF Downloads:  556
  • Cited By: 0
Publishing process
  • Received Date:  17 September 2015
  • Accepted Date:  25 October 2015
  • Published Online:  20 January 2016

/

返回文章
返回
Baidu
map