-
We propose a method of designing ultrathin broadband perfect metamaterial absorber (PMA) which is based on the parameters of the cell. The bandwidth is enhanced via the method which combines the multilayer and multi-resonance in a layer. And it is not complex due to having no lumped elements in it, so it is easy to fabricate and apply. In order to illustrate the method, a double-layer perfect metamaterial absorber with three resonance peaks is designed using the above method. The equivalent circuit of the proposed absorber is analyzed so as to better understand the mechanism of the high absorption. By adjusting geometric parameters of the structure, we can obtain a polarization-insensitive and wide-incident-angle ultra-thin absorber. Simulated and experimental results show that the full-width at half-maximum is 14.1% when the thickness of the filer is only 0.01λ, and the bandwidth of-3 dBsm radar cross section reduction is 18.9%. At resonance, the reduction value may exceed 23 dBsm while the absorber has a good characteristic of RCS reduction at the boresight direction from-40° to +40°.
-
Keywords:
- perfect metamaterial absorber /
- broadband /
- radar cross section /
- equivalent circuit
[1] Landy N I, Sajuyigbe S, Mock J J 2008 Phys. Rev. Lett. 100 207402
[2] Zhu B, Wang Z, Huang C, Feng Y 2010 Progress In Electromagnetics Research 10 231
[3] Chen H T 2012 Opt. Express 62 7165
[4] Cheng Y Z, Nie Y, Gong R Z 2013 Optica and Laser Tech. 48 415
[5] Hu T, Bingham C M, Strikwerda A C, Landy N I 2008 Phys. Rev. B 78 241103
[6] Gu C, Qu S B, Pei Z, Zhou H, Wang J 2010 Progress in Electromagnetics Lett. 17 171
[7] Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111
[8] Li H, Yuan L H, Zhou B, Shen X P, Cheng Q, Cui T J 2011 J. Appl. Phys. 110 014909
[9] Hu T, Bingham C M, Pilon D, Kebin F 2010 J. Phys. D Appl. Phys. 43 225102
[10] Luo H, Cheng Y Z, Gong R Z 2011 Eur. Phys. J. B 81 387
[11] Gu S, Barrett J P, Hand T H, Popa B I, Cummer S A 2010 J. Appl. Phys. 108 064913
[12] Cheng Y Z, Wang Y, Nie Y, Gong R Z, Xiong X 2012 J. Appl. Phys. 111 044902
[13] Lee J, Lim S 2011 Electron. Lett. 47 8
[14] Li S J, Cao Y Y, Gao J, Liu T, Yang H H, Li W Q 2013 Acta Phys. Sin. 62 124101 (in Chinese) [李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强 2013 62 124101]
[15] Ding F, Cui Y X, Ge X C, Jin Y, He S L 2012 Appl. Phys. Lett. 100 103506
[16] Pham V T, Park J W, Vu D L 2013 Adv. Nat. Sci.: Nanosci. Nanotechnol 4 015001
[17] Yang H H, Cao X Y, Gao J, Liu T, Li W Q 2013 Acta Phys. Sin. 62 064103 (in Chinese) [杨欢欢, 曹祥玉, 高军, 刘涛, 李文强 2013 62 064103]
[18] Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q 2013 IEEE Trans. Antennas Propag. 61 2327
[19] Kazemzadeh A, Karlsson A 2010 IEEE Trans. Antennas Propag. 58 3310
[20] Costa F, Genovesi S, Monorchio A 2013 IEEE Trans. Antennas Propag. 61 1201
[21] Costa F. Monorchio A, Genovesi S 2010 IEEE Trans. Antennas Propagat. 58 1551
[22] Li L, Yang Y, Liang C H 2011 J. Appl. Phys. 110 06370
-
[1] Landy N I, Sajuyigbe S, Mock J J 2008 Phys. Rev. Lett. 100 207402
[2] Zhu B, Wang Z, Huang C, Feng Y 2010 Progress In Electromagnetics Research 10 231
[3] Chen H T 2012 Opt. Express 62 7165
[4] Cheng Y Z, Nie Y, Gong R Z 2013 Optica and Laser Tech. 48 415
[5] Hu T, Bingham C M, Strikwerda A C, Landy N I 2008 Phys. Rev. B 78 241103
[6] Gu C, Qu S B, Pei Z, Zhou H, Wang J 2010 Progress in Electromagnetics Lett. 17 171
[7] Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111
[8] Li H, Yuan L H, Zhou B, Shen X P, Cheng Q, Cui T J 2011 J. Appl. Phys. 110 014909
[9] Hu T, Bingham C M, Pilon D, Kebin F 2010 J. Phys. D Appl. Phys. 43 225102
[10] Luo H, Cheng Y Z, Gong R Z 2011 Eur. Phys. J. B 81 387
[11] Gu S, Barrett J P, Hand T H, Popa B I, Cummer S A 2010 J. Appl. Phys. 108 064913
[12] Cheng Y Z, Wang Y, Nie Y, Gong R Z, Xiong X 2012 J. Appl. Phys. 111 044902
[13] Lee J, Lim S 2011 Electron. Lett. 47 8
[14] Li S J, Cao Y Y, Gao J, Liu T, Yang H H, Li W Q 2013 Acta Phys. Sin. 62 124101 (in Chinese) [李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强 2013 62 124101]
[15] Ding F, Cui Y X, Ge X C, Jin Y, He S L 2012 Appl. Phys. Lett. 100 103506
[16] Pham V T, Park J W, Vu D L 2013 Adv. Nat. Sci.: Nanosci. Nanotechnol 4 015001
[17] Yang H H, Cao X Y, Gao J, Liu T, Li W Q 2013 Acta Phys. Sin. 62 064103 (in Chinese) [杨欢欢, 曹祥玉, 高军, 刘涛, 李文强 2013 62 064103]
[18] Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q 2013 IEEE Trans. Antennas Propag. 61 2327
[19] Kazemzadeh A, Karlsson A 2010 IEEE Trans. Antennas Propag. 58 3310
[20] Costa F, Genovesi S, Monorchio A 2013 IEEE Trans. Antennas Propag. 61 1201
[21] Costa F. Monorchio A, Genovesi S 2010 IEEE Trans. Antennas Propagat. 58 1551
[22] Li L, Yang Y, Liang C H 2011 J. Appl. Phys. 110 06370
Catalog
Metrics
- Abstract views: 6189
- PDF Downloads: 1018
- Cited By: 0