搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种兼具宽带增益改善和宽带、宽角度低雷达散射截面的微带天线

郑月军 高军 曹祥玉 郑秋容 李思佳 李文强 杨群

引用本文:
Citation:

一种兼具宽带增益改善和宽带、宽角度低雷达散射截面的微带天线

郑月军, 高军, 曹祥玉, 郑秋容, 李思佳, 李文强, 杨群

A broad-band gain improvement and wide-band, wide-angle low radar cross section microstrip antenna

Zheng Yue-Jun, Gao Jun, Cao Xiang-Yu, Zheng Qiu-Rong, Li Si-Jia, Li Wen-Qiang, Yang Qun
PDF
导出引用
  • 设计并制备了一种兼具高增益和低雷达散射截面(radar cross section, RCS)的微带天线, 通过给原始微带天线加载双屏频率选择表面(frequency selective surface, FSS)覆层, 使其具有宽带的3 dB增益带宽和宽带、宽角度的低RCS特性. 该FSS单元的上层是四个开口处都焊有电阻的金属环结构, 下层是中间和四边都开缝的金属贴片结构. 上层加载的电阻主要用于吸收雷达入射波, 减缩天线RCS; 下层的贴片和天线地板构成Fabry-Perot谐振腔, 提高天线增益. 在5.75–11.37 GHz频带内, S22S12S11反射系数相位曲线斜率为正, 幅度模值均在0.86以上. 实验结果表明: 与原始天线相比, 在谐振频点11.73 GHz处, 天线增益提高3.4 dB, E, H面的半功率波束宽度分别减小16°和50°; 天线的3 dB增益带宽为10.00–12.40 GHz, 完全覆盖阻抗带宽. 在4.10–11.30 GHz 频带内, 天线法向RCS均有3 dB以上的减缩, 最大减缩23.08 dB; 4.95 GHz处的单站RCS在-20°–20°的角域、双站RCS 在-37°–37°的角域均有3 dB以上的减缩. 实验结果证实了该FSS覆层可用于同时改善天线的辐射和散射 性能.
    A novel high-gain and low radar cross section (RCS) microstrip antenna is designed and fabricated. The proposed antenna obtained broad-band 3 dB gain bandwidth and wide-band, wide-angle low RCS properties after applying the frequency selective surface (FSS) as a superstrate of original microstrip antenna. The FSS cell is composed of two metallic layers separated by a dielectric substrate. A metallic square loop with four resistors mounted on each side of the loop is enched on the top layer and a metallic plane with a central cross slot and four fringe slots is enched on the bottom layer. The four resistors of top layer are mainly used to absorb radar incoming wave and reduce antenna RCS. The patch of bottom layer can constructe a Fabry-Perot resonance cavity with ground plane and improve the antenna gain. The reflection coefficient S22 and transmission coefficient S12 of top layer are all below -10 dB at 5.75-11.37 GHz. The reflection phase gradient of bottom layer is positive and the reflection magnitude value is above 0.86 from 11.21 GHz to 11.54 GHz. Measurement results show that the antenna gain is enhanced by about 3.4 dB at 11.73 GHz, and the half-power beam width of E-plane and H-plane is reduced 16° and 50° respectively. The 3 dB gain bandwidth is about 2.4 GHz which from 10.0 GHz to 12.4 GHz and well cover the impedance bandwidth. The proposed antenan achieved an RCS reduction of more than 3 dB in the normal direction at 4.10-11.30 GHz, the largest reduction reached 23.08 dB in comparison with the original antenna. The monostatic and bistatic RCS reduction are over 3 dB from -20° to 20° and -37° to 37° respectively at 4.95 GHz. The results proved the FSS superstrate can be applied to improve the radiation and scattering performance simultaneously.
    • 基金项目: 国家自然科学基金(批准号:61271100)和陕西省自然科学基础研究计划项目(批准号:2012JM8003)资助的课题.
    • Funds: Project support by the National Natural Science Foundation of China (Grant No. 61271100 ) and the Natural Sicience Basic Research of Shaanxi Province, China (Grant No. 2012JM8003).
    [1]

    Guntupalli A B, Wu K 2014 IEEE Anten. Wire. Propag. 13 384

    [2]

    Yeap S B, Chen Z M 2010 IEEE Trans. Anten. Propag. 58 2811

    [3]

    Latif S I, Shafai L, Shafai C 2010 IET Microw. Anten. Propag. 5 402

    [4]

    Prakash P, Abegaonkar M P, Basu A, Koul S K 2013 IEEE Anten. Wire. Propag. 12 1315

    [5]

    Cook B S, Shamim A 2013 IEEE Anten. Wire. Propag. 12 76

    [6]

    Ge Y H, Esselle K P, Bird T S 2012 IEEE Trans. Anten. Propag. 60 743

    [7]

    Yuan Z D, Gao J, Cao X Y, Yang H H, Yang Q, Li W Q, Shang K 2014 Acta Phys. Sin. 63 014102 (in Chinese) [袁子东, 高军, 曹祥玉, 杨欢欢, 杨群, 李文强, 商楷 2014 63 014102]

    [8]

    Jiang W, Gong S X, Hong T, Wang X 2010 Acta Electron. Sin. 38 2162 (in Chinese) [姜文, 龚书喜, 洪涛, 王兴 2010 电子学报 38 2162]

    [9]

    Li S J, Gao J, Cao X Y, Li W Q, Zhang Z, Zhang D 2014 J. Appl. Phys. 115 213703

    [10]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [11]

    Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P 2007 IEEE Trans. Anten. Propagat. 55 3630

    [12]

    Zhao Y, Cao X Y, Gao J, Li W Q 2014 IEEE Mic. Opt. Tech. Lett. 56 158

    [13]

    Lin B Q, Zhao S H, Wei W, Da X Y, Zheng Q R, Zhang H Y, Zhu M 2014 Chin. Phys. B 23 024201

    [14]

    Genovesi S, Costa F, Monorchio A 2014 IEEE Trans. Antenn. Propag. 62 163

    [15]

    Cheng Y Z, Nie Y, Gong R Z, Wang X 2013 Acta Phys. Sin. 62 044103 (in Chinese) [程用志, 聂彦, 龚荣洲, 王鲜 2013 62 044103]

    [16]

    Costa F, Monorchio A 2012 IEEE Trans. Anten. Propag. 60 2740

    [17]

    Pan W B, Huang C, Chen P, Ma X L, Hu C G, Luo X G 2014 IEEE Trans. Anten. Propag. 62 945

    [18]

    Jia H Y, Gao J S, Feng X G 2009 Chin. Phys. B 18 1227

    [19]

    Lu G W, Zhang J, Yang J Y, Zhang T X, Kou Y 2013 Acta Phys. Sin. 62 198401 (in Chinese) [卢戈舞, 张剑, 杨洁颖, 张天翔, 寇元 2013 62 198401]

    [20]

    Pirhadi A, Bahrami H, Nasri J 2012 IEEE Trans. Anten. Propag. 60 2101

    [21]

    Wang M, Huang C, Chen P, Wang Y Q, Zhao Z Y, Luo X G 2014 IEEE Anten. Wire. Propag. 13 213

    [22]

    Zuo Y, Shen Z X, Feng Y J 2014 Chin. Phys. B 23 034101

    [23]

    Feresidis A P, Vardaxoglou J C 2001 IEE Proc.-Microw. Anten. Propag. 148 345

  • [1]

    Guntupalli A B, Wu K 2014 IEEE Anten. Wire. Propag. 13 384

    [2]

    Yeap S B, Chen Z M 2010 IEEE Trans. Anten. Propag. 58 2811

    [3]

    Latif S I, Shafai L, Shafai C 2010 IET Microw. Anten. Propag. 5 402

    [4]

    Prakash P, Abegaonkar M P, Basu A, Koul S K 2013 IEEE Anten. Wire. Propag. 12 1315

    [5]

    Cook B S, Shamim A 2013 IEEE Anten. Wire. Propag. 12 76

    [6]

    Ge Y H, Esselle K P, Bird T S 2012 IEEE Trans. Anten. Propag. 60 743

    [7]

    Yuan Z D, Gao J, Cao X Y, Yang H H, Yang Q, Li W Q, Shang K 2014 Acta Phys. Sin. 63 014102 (in Chinese) [袁子东, 高军, 曹祥玉, 杨欢欢, 杨群, 李文强, 商楷 2014 63 014102]

    [8]

    Jiang W, Gong S X, Hong T, Wang X 2010 Acta Electron. Sin. 38 2162 (in Chinese) [姜文, 龚书喜, 洪涛, 王兴 2010 电子学报 38 2162]

    [9]

    Li S J, Gao J, Cao X Y, Li W Q, Zhang Z, Zhang D 2014 J. Appl. Phys. 115 213703

    [10]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [11]

    Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P 2007 IEEE Trans. Anten. Propagat. 55 3630

    [12]

    Zhao Y, Cao X Y, Gao J, Li W Q 2014 IEEE Mic. Opt. Tech. Lett. 56 158

    [13]

    Lin B Q, Zhao S H, Wei W, Da X Y, Zheng Q R, Zhang H Y, Zhu M 2014 Chin. Phys. B 23 024201

    [14]

    Genovesi S, Costa F, Monorchio A 2014 IEEE Trans. Antenn. Propag. 62 163

    [15]

    Cheng Y Z, Nie Y, Gong R Z, Wang X 2013 Acta Phys. Sin. 62 044103 (in Chinese) [程用志, 聂彦, 龚荣洲, 王鲜 2013 62 044103]

    [16]

    Costa F, Monorchio A 2012 IEEE Trans. Anten. Propag. 60 2740

    [17]

    Pan W B, Huang C, Chen P, Ma X L, Hu C G, Luo X G 2014 IEEE Trans. Anten. Propag. 62 945

    [18]

    Jia H Y, Gao J S, Feng X G 2009 Chin. Phys. B 18 1227

    [19]

    Lu G W, Zhang J, Yang J Y, Zhang T X, Kou Y 2013 Acta Phys. Sin. 62 198401 (in Chinese) [卢戈舞, 张剑, 杨洁颖, 张天翔, 寇元 2013 62 198401]

    [20]

    Pirhadi A, Bahrami H, Nasri J 2012 IEEE Trans. Anten. Propag. 60 2101

    [21]

    Wang M, Huang C, Chen P, Wang Y Q, Zhao Z Y, Luo X G 2014 IEEE Anten. Wire. Propag. 13 213

    [22]

    Zuo Y, Shen Z X, Feng Y J 2014 Chin. Phys. B 23 034101

    [23]

    Feresidis A P, Vardaxoglou J C 2001 IEE Proc.-Microw. Anten. Propag. 148 345

  • [1] 李桐, 杨欢欢, 李奇, 廖嘉伟, 高坤, 季轲峰, 曹祥玉. 基于共享孔径技术的低RCS电磁超构表面天线设计.  , 2024, 73(12): 124101. doi: 10.7498/aps.73.20240142
    [2] 王东俊, 孙子涵, 张袁, 唐莉, 闫丽萍. 抗方阻波动的超宽带轻薄频率选择表面吸波体.  , 2024, 73(2): 024201. doi: 10.7498/aps.73.20231365
    [3] 王成蓉, 唐莉, 周艳萍, 赵翔, 刘长军, 闫丽萍. 透明可开关的超宽带频率选择表面电磁屏蔽研究.  , 2024, 73(12): 124201. doi: 10.7498/aps.73.20240339
    [4] 冯奎胜, 李娜, 李桐. 有源器件混合集成的超薄超宽带可调雷达吸波体.  , 2022, 71(3): 034101. doi: 10.7498/aps.71.20211254
    [5] 冯奎胜, 李娜, 杨欢欢. 电磁超构表面与天线结构一体化的低RCS阵列.  , 2021, 70(19): 194101. doi: 10.7498/aps.70.20210746
    [6] 冯奎胜, 李娜, 李桐. 有源器件混合集成的超薄超宽带可调雷达吸波体.  , 2021, (): . doi: 10.7498/aps.70.20211254
    [7] 郝彪, 杨宾锋, 高军, 曹祥玉, 杨欢欢, 李桐. 一种编码式低雷达散射截面超表面天线阵列设计.  , 2020, 69(24): 244101. doi: 10.7498/aps.69.20200978
    [8] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计.  , 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [9] 陈巍, 高军, 张广, 曹祥玉, 杨欢欢, 郑月军. 一种编码式宽带多功能反射屏.  , 2017, 66(6): 064203. doi: 10.7498/aps.66.064203
    [10] 侯海生, 王光明, 李海鹏, 蔡通, 郭文龙. 超薄宽带平面聚焦超表面及其在高增益天线中的应用.  , 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [11] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计.  , 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [12] 惠忆聪, 王春齐, 黄小忠. 基于电阻型频率选择表面的宽带雷达超材料吸波体设计.  , 2015, 64(21): 218102. doi: 10.7498/aps.64.218102
    [13] 郑月军, 高军, 曹祥玉, 李思佳, 杨欢欢, 李文强, 赵一, 刘红喜. 覆盖X和Ku波段的低雷达散射截面人工磁导体反射屏.  , 2015, 64(2): 024219. doi: 10.7498/aps.64.024219
    [14] 赵一, 曹祥玉, 张迪, 姚旭, 李思佳, 杨欢欢, 李文强. 一种兼有高增益和宽带低散射特征的波导缝隙天线设计.  , 2014, 63(3): 034101. doi: 10.7498/aps.63.034101
    [15] 袁子东, 高军, 曹祥玉, 杨欢欢, 杨群, 李文强, 商楷. 一种性能稳定的新型频率选择表面及其微带天线应用.  , 2014, 63(1): 014102. doi: 10.7498/aps.63.014102
    [16] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体.  , 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [17] 赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢. 人工磁导体正交布阵的宽带低雷达截面反射屏.  , 2013, 62(15): 154204. doi: 10.7498/aps.62.154204
    [18] 李思佳, 曹祥玉, 高军, 郑秋容, 赵一, 杨群. 低雷达散射截面的超薄宽带完美吸波屏设计研究.  , 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [19] 刁志辉, 黄文彬, 邓舒鹏, 刘永刚, 彭增辉, 姚丽双, 宣丽. 基于低散射和高增益全息液晶/聚合物光栅的分布反馈式激光器.  , 2013, 62(3): 034202. doi: 10.7498/aps.62.034202
    [20] 李小秋, 高劲松, 赵晶丽, 孙连春. 一种适用于雷达罩的频率选择表面新单元研究.  , 2008, 57(6): 3803-3806. doi: 10.7498/aps.57.3803
计量
  • 文章访问数:  6328
  • PDF下载量:  886
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-11
  • 修回日期:  2014-06-17
  • 刊出日期:  2014-11-05

/

返回文章
返回
Baidu
map