-
Bi2Te3-based alloys have been long regarded as the materials chosen for room temperature thermoelectric (TE) applications. With superior TE performances, Bi2Te3-based bulk materials have been commercially used to fabricate TE devices already. However, bulk materials are less suitable for the requirements for applications of flexible or thin film TE devices, and therefore the thin film materials with advanced TE properties are highly demanded. Comparing with bulk materials and P-type Bi2Te3-based thin films, the TE properties of N-type Bi2Te3-based thin films have been relatively poor so far and need further improving for practical applications. In this study, a series of N-type Bi2Te3–xSex thin films is prepared via magnetron sputtering method, and their structures can be precisely controlled by adjusting the sputtering conditions. Preferential layered growth of the Bi2Te3–xSex thin films along the (00l) direction is achieved by adjusting the substrate temperature and working pressure. Superior electrical conductivity over 105 S/m is achieved by virtue of high in-plane mobility. combining the advanced Seebeck coefficient of Bi2Te3-based material with superior electrical conductivity of highly oriented Bi2Te3–
xSex thin film, a high power factor (PF) of the optimal Bi2Te3–xSex thin film can be enhanced to 42.5 μW/(cm·K2) at room temperature, which is comparable to that of P-type Bi2Te3-based thin film and bulk material. -
Keywords:
- Bi2Te3–xSex thin film /
- magnetron sputtering /
- thermoelectric /
- power factor
[1] Li P, Cai L, Zhai P, Tang X, Zhang Q, Niino M 2010 J. Electron. Mater. 39 1522
Google Scholar
[2] Suter C, Jovanovic Z R, Steinfeld A 2012 Appl. Energ. 99 379
Google Scholar
[3] Yu Y, Zhu W, Wang Y, Zhu P, Peng K, Deng Y 2020Appl. Energ. 275 115404
[4] ChenY, Tan X, Peng S, Xin C, Delahoy A E, Chin K K, Zhang C 2018 J. Electron. Mater. 47 1201
Google Scholar
[5] Zhou X, Zou J, Chen Z 2020 Chem. Rev. 120 7399
Google Scholar
[6] Qin H, Liu Y, Zhang Z, Wang Y, Cao J, Cai W, Zhang Q, Sui J 2018 Mater. Today. Phys. 6 31
Google Scholar
[7] Wei H, Tang J, Xi D 2020 J. Alloy. Compd. 817 153284
Google Scholar
[8] Liu W, Zhang Q, Lan Y, Chen S, Yan X, Zhang Q, Wang H, Wang D, Chen G, Ren Z 2011 Adv. Energy. Mater. 1 577
Google Scholar
[9] Wei H, Tang J, Wang H, Xu D 2020 J. Mater. Chem. A 8 24524
Google Scholar
[10] Zhu W, Deng Y, Cao L 2017 Nano Energy 34 463
Google Scholar
[11] Vineis C J, Shakouri A, Majumdar A, Kanatzidis M G 2010 Adv. Mater. 22 3970
Google Scholar
[12] Zhang Z, Wang Y, Deng Y, Xu Y 2011 Solid. State. Commun. 151 1520
Google Scholar
[13] Takashiri M, Tanaka S, Miyazaki K 2010 Thin Solid Films 519 619
Google Scholar
[14] Parashchuk T, Kostyuk O, Nykyruy L, Dashevsky Z 2020 Mater. Chem. Phys. 253 123427
Google Scholar
[15] Bassi A Li, Bailini A, Casari C S, Donati F, Mantegazza A, Passoni M, Russo V, Bottani C E 2009 J. Appl. Phys. 105 123407
[16] Peranio N, Winkler M, Aabdin Z, Konig J, Bottner H, Eibl O 2012 Phys. Status Solidi A 209 289
Google Scholar
[17] Zhu W, Deng Y, Wang Y, Luo B, Cao L 2014 Thin Solid Films 556 270
Google Scholar
[18] Mu X, Zhou H, He D, Zhao W, Wei P, Zhu W, Nie X, Liu H, Zhang Q 2017 Nano Energy 33 55
Google Scholar
[19] Deng Y, Zhang Z, Wang Y, Xu Y 2012 J. Nanopart Res. 14 775
Google Scholar
[20] Duan X, Jiang Y 2010 Appl. Surf. Sci. 256 7365
Google Scholar
[21] Duan X, Jiang Y 2011 Thin Solid Films 519 3007
Google Scholar
[22] Bourgault D, Garampon C Giroud, Caillault N, Carbone L, Aymami J A 2008 Thin Solid Films 516 8579
Google Scholar
[23] Bottnrt H, Chen G, Venkatasubramanian R 2006 MRS Bulletin 31 211
Google Scholar
[24] Lewis B, Campell D S 1967J. Vac. Sci. Technol. 4 209
[25] Zhang Z, Lagally M 1997 Science 276 377
Google Scholar
-
表 1 不同试样的制备参数
Table 1. Sputtering parameters of all the samples.
试样 Bi2Te3–xSex
直流靶功
率/WTe射频靶
功率/W气压/Pa 温度/℃ 时间/h BTS1 12 25 3 350 2 BTS2 12 25 1 450 2 BTS3 12 25 2 450 2 BTS4 12 25 3 450 2 BTS5 12 25 3 450 1 BTS6 12 25 3 450 3 表 2 霍尔效应测试
Table 2. Hall measurements of all the samples.
试样 载流子浓度/(1019 cm–3) 载流子迁移率/(cm2·V–1·s–1) 电导率
/(104 S·m–1)BTS1 11.7 17.1 3.2 BTS2 12.7 30.6 6.2 BTS3 10.0 59.8 9.6 BTS4 8.3 84.2 11.2 BTS5 7.2 45.2 5.2 BTS6 9.1 63.9 9.3 表 3 元素原子比
Table 3. Atomic ratio by EDS measurements.
试样 Bi/% Te/% Se/% BTS1 36.5 60.2 3.3 BTS2 41.7 53.6 4.7 BTS3 41.6 53.9 4.5 BTS4 41.3 54.3 4.4 BTS5 41.4 54.8 3.8 BTS6 41.8 53.5 4.7 -
[1] Li P, Cai L, Zhai P, Tang X, Zhang Q, Niino M 2010 J. Electron. Mater. 39 1522
Google Scholar
[2] Suter C, Jovanovic Z R, Steinfeld A 2012 Appl. Energ. 99 379
Google Scholar
[3] Yu Y, Zhu W, Wang Y, Zhu P, Peng K, Deng Y 2020Appl. Energ. 275 115404
[4] ChenY, Tan X, Peng S, Xin C, Delahoy A E, Chin K K, Zhang C 2018 J. Electron. Mater. 47 1201
Google Scholar
[5] Zhou X, Zou J, Chen Z 2020 Chem. Rev. 120 7399
Google Scholar
[6] Qin H, Liu Y, Zhang Z, Wang Y, Cao J, Cai W, Zhang Q, Sui J 2018 Mater. Today. Phys. 6 31
Google Scholar
[7] Wei H, Tang J, Xi D 2020 J. Alloy. Compd. 817 153284
Google Scholar
[8] Liu W, Zhang Q, Lan Y, Chen S, Yan X, Zhang Q, Wang H, Wang D, Chen G, Ren Z 2011 Adv. Energy. Mater. 1 577
Google Scholar
[9] Wei H, Tang J, Wang H, Xu D 2020 J. Mater. Chem. A 8 24524
Google Scholar
[10] Zhu W, Deng Y, Cao L 2017 Nano Energy 34 463
Google Scholar
[11] Vineis C J, Shakouri A, Majumdar A, Kanatzidis M G 2010 Adv. Mater. 22 3970
Google Scholar
[12] Zhang Z, Wang Y, Deng Y, Xu Y 2011 Solid. State. Commun. 151 1520
Google Scholar
[13] Takashiri M, Tanaka S, Miyazaki K 2010 Thin Solid Films 519 619
Google Scholar
[14] Parashchuk T, Kostyuk O, Nykyruy L, Dashevsky Z 2020 Mater. Chem. Phys. 253 123427
Google Scholar
[15] Bassi A Li, Bailini A, Casari C S, Donati F, Mantegazza A, Passoni M, Russo V, Bottani C E 2009 J. Appl. Phys. 105 123407
[16] Peranio N, Winkler M, Aabdin Z, Konig J, Bottner H, Eibl O 2012 Phys. Status Solidi A 209 289
Google Scholar
[17] Zhu W, Deng Y, Wang Y, Luo B, Cao L 2014 Thin Solid Films 556 270
Google Scholar
[18] Mu X, Zhou H, He D, Zhao W, Wei P, Zhu W, Nie X, Liu H, Zhang Q 2017 Nano Energy 33 55
Google Scholar
[19] Deng Y, Zhang Z, Wang Y, Xu Y 2012 J. Nanopart Res. 14 775
Google Scholar
[20] Duan X, Jiang Y 2010 Appl. Surf. Sci. 256 7365
Google Scholar
[21] Duan X, Jiang Y 2011 Thin Solid Films 519 3007
Google Scholar
[22] Bourgault D, Garampon C Giroud, Caillault N, Carbone L, Aymami J A 2008 Thin Solid Films 516 8579
Google Scholar
[23] Bottnrt H, Chen G, Venkatasubramanian R 2006 MRS Bulletin 31 211
Google Scholar
[24] Lewis B, Campell D S 1967J. Vac. Sci. Technol. 4 209
[25] Zhang Z, Lagally M 1997 Science 276 377
Google Scholar
Catalog
Metrics
- Abstract views: 8236
- PDF Downloads: 392
- Cited By: 0