Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Realizing high thermoelectric performance in SnSe2 via intercalating Cu

Li Cai-Yun He Wen-Ke Wang Dong-Yang Zhang Xiao Zhao Li-Dong

Citation:

Realizing high thermoelectric performance in SnSe2 via intercalating Cu

Li Cai-Yun, He Wen-Ke, Wang Dong-Yang, Zhang Xiao, Zhao Li-Dong
PDF
HTML
Get Citation
  • SnSe, a layered material with intrinsic low thermal conductivity, is reported to have excellent thermoelectric properties. SnSe2 has a similar structure to SnSe, but the SnSe2 has a low electrical transport, resulting in a poor thermoelectric performance, and the intrinsic SnSe2 has a maximum ZT value of only ~ 0.09 at 773 K. In this work, SnSe1.98Br0.02-y%Cu (y = 0, 0.50, 0.75, 1.0) bulk materials are synthesized by the melting method combined with spark plasma sintering (SPS) based on the carrier concentration improved through Br doping. In the SnSe2 materials with van der Waals chemical bonding between layers, the synergistic effects of intercalating Cu on the thermoelectric properties are investigated. On the one hand, the extra Cu not only provides additional electrons but also can be embedded stably in the van der Waals gap and form an intercalated structure, which is beneficial to the charge transfer in or out of the layers, and thus synergistically improving the carrier concentration and carrier mobility. On the other hand, owing to the dynamic Cu doping, the increase of carrier concentration compensates for the decrease of carrier mobility caused by carrier-carrier scattering, which maintains the high electrical transport properties at high temperature. The present results show that at room temperature, the power factors along the parallel and perpendicular to the SPS (//P and ⊥P) sintering directions increase from ~0.65 and ~0.98 µW·cm–1·K–2 for intrinsic SnSe2 to ~10 and ~19 μW·cm–1·K–2 for SnSe1.98Br0.02-0.75%Cu samples, respectively. Finally, at 773 K, the maximum ZT value of ~0.8 is achieved along the ⊥P direction. This study proves that the SnSe2 greatly promises to become an excellent thermoelectric material.
      Corresponding author: Zhang Xiao, zhang_xiao@buaa.edu.cn ; Zhao Li-Dong, zhaolidong@buaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51772012, 52002042, 52002011), the National Key R&D Program of China (Grant Nos. 2018YFA0702100, 2018YFB0703600), the Natural Science Foundation of Beijing, China (Grant No. JQ18004), the 111Project (Grant No. B17002), the National Postdoctoral Program for Innovative Talents of China (Grant No. BX20200028), the China Postdoctoral Science Foundation (Grant No. 2021M690280), the Natural Science Foundation of Chongqing, China (Grant No. cstc2019jcyj-msxmX0554), the High-Performance Computing (HPC) Resources at Beihang University, China, and the National Science Fund for Distinguished Young Scholars of China (Grant No. 51925101).
    [1]

    Zhang X, Zhao L D 2015 J. Materiomics 1 92Google Scholar

    [2]

    Li J F, Liu W S, Zhao L D, Zhou M 2010 NPG Asia Mater. 2 152Google Scholar

    [3]

    赵立东, 张德培, 赵勇 2015 西华大学学报 (自然科学版) 34 1Google Scholar

    Zhao L D, Zhang D P, Zhao Y 2015 J. Xihua Univ. (Nat. Sci. Ed. ) 34 1Google Scholar

    [4]

    Xiao Y, Zhao L D 2020 Science 367 1196Google Scholar

    [5]

    蒋俊, 许高杰, 崔平, 陈立东 2005 55 4849Google Scholar

    Jiang J, Xu G J, Cui P, Chen L D 2005 Acta Phys. Sin. 55 4849Google Scholar

    [6]

    郑丽仙, 胡剑峰, 骆军 2020 69 247102Google Scholar

    Zheng L X, Hu J F, Luo J 2020 Acta Phys. Sin. 69 247102Google Scholar

    [7]

    赵英浩, 张瑞, 张波萍, 尹阳, 王明军, 梁豆豆 2021 70 128401Google Scholar

    Zhao Y H, Zhang R, Zhang B P, Yin Y, Wang M J, Liang D D 2021 Acta Phys. Sin. 70 128401Google Scholar

    [8]

    Xiao Y, Wang D Y, Zhang Y, Chen C G, Zhang S X, Wang K D, Wang G T, Pennycook S J, Snyder G J, Wu H J, Zhao L D 2020 J. Am. Chem. Soc 142 4051Google Scholar

    [9]

    He W K, Wang D Y, Jun W H, et al. 2019 Science 365 1418Google Scholar

    [10]

    Zhao L D, Chang C, Tan G J, Kanatzidis M G 2016 Energy Environ. Sci. 9 3044Google Scholar

    [11]

    Tan G J, Zhao L D, Kanatzidis M G 2016 Chem. Rev. 116 12123Google Scholar

    [12]

    Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2014 Nature 508 373Google Scholar

    [13]

    Chang C, Wu M H, He D S, Pei Y L, Wu C F, Wu X F, Yu H L, Zhu F Y, Wang K D, Chen Y, Huang L, Li J F, He J Q, Zhao L D 2018 Science 360(SI) 778

    [14]

    Qin B C, Wang D Y, Liu X X, Qin Y X, Dong J F, Luo J F, Li J W, Liu W, Tan G J, Tang X F, Li J F, He J, Zhao L D 2021 Science 373 556Google Scholar

    [15]

    Sun J, Liu S, Wang C, Bai Y, Chen G, Luo Q, Ma F 2020 Appl. Surf. Sci. 510 145478Google Scholar

    [16]

    Wang H F, Gao Y, Liu G 2017 RSC Adv. 7 8098Google Scholar

    [17]

    Pham A T, Vu T H, Chang C, Trinh T L, Lee J E, Ryu H, Hwang C, Mo S K, Kim J, Zhao L D, Duong A T, Cho S 2020 ACS Appl. Energy Mater. 3 10787Google Scholar

    [18]

    Shu Y J, Su X L, Xie H Y, Zheng G, Liu W, Yan Y G, Luo T T, Yang X, Wang D Y, Uher C, Tang X F 2018 ACS Appl. Mater. Interfaces 10 15793Google Scholar

    [19]

    Liu C Y, Huang Z W, Wang D H, Wang X X, Miao L, Wang X Y, Wu S H, Toyama N, Asaka T, Chen J L, Nishibori E, Zhao L D 2019 J. Mater. Chem. A 7 9761Google Scholar

    [20]

    Xu P P, Fu T Z, Xin J Z, Liu Y T, Ying P T, Zhao X B, Pan H G, Zhu T J 2017 Sci. Bull. 62 1663Google Scholar

    [21]

    Luo Y B, Zheng Y, Luo Z Z, Hao S Q, Du C F, Liang Q H, Li Z, Khor K A, Hippalgaonkar K, Xu J W, Yan Q Y, Wolverton C, Kanatzidis M G 2018 Adv. Energy Mater. 8 1702167Google Scholar

    [22]

    施先珍 2014 硕士学位论文 (武汉: 武汉理工大学)

    Shi X Z 2014 M. S. Thesis (Wuhan: Wuhan University of Technology) (in Chinese)

    [23]

    Sun G L, Qin X Y, Li D, Zhang J, Ren B J, Zou T H, Xin H X, Paschen S B, Yan X L 2015 J. Alloys Compd. 639 9Google Scholar

    [24]

    Xiao Y, Wu H J, Li W, Yin M J, Pei Y L, Zhang Y, Fu L W, Chen Y X, Pennycook S J, Huang L, He J Q, Zhao L D 2017 J. Am. Chem. Soc 139 18732Google Scholar

    [25]

    Qin B C, Wang D Y, He W K, Zhang Y, Wu H J, Pennycook S J, Zhao L D 2018 J. Am. Chem. Soc 141 1141Google Scholar

    [26]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [27]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [28]

    John P P, Kieron B, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [29]

    Zhou C, Yu Y, Zhang X, Cheng Y, Xu J, Lee Y K, Yoo B, Cojocaru‐Mirédin O, Liu G, Cho S P, Wuttig M, Hyeon T, Chung In 2019 Adv. Funct. Mater. 30 1908405Google Scholar

    [30]

    Savin A, Jepsen O, Flad J, Andersen O K, Preuss H, von Schnering H G 1992 Angew. Chem. Int. Ed. 31 187Google Scholar

    [31]

    Sun B Z, Ma Z J, He C, Wu K C 2015 Phys. Chem. Chem. Phys. 17 29844Google Scholar

    [32]

    Qian X, Wang D Y, Zhang Y, Wu H J, Pennycook S J, Zheng L, Poudeu P F P, Zhao L D 2020 J. Mater. Chem. A 8 5699Google Scholar

    [33]

    Li C Y, He W K, Wang D Y, Zhao L D 2021 Chin. Phys. B 30 067101Google Scholar

    [34]

    Yamamoto M, Ohta H, Koumoto K 2007 Appl. Phys. Lett. 90 072101Google Scholar

    [35]

    Zhao L D, Zhang B P, Liu W S, Zhang H L, Li J F 2008 J. Solid State Chem. 181 3278Google Scholar

    [36]

    Pei Y L, He J Q, Li J F, Li F, Liu Q J, Pan W, Barreteau C, Berardan D, Dragoe N, Zhao L D 2013 NPG Asia Mater. 5 e47Google Scholar

    [37]

    Ge Z H, Song D, Chong X, Zheng F, Jin L, Qian X, Zheng L, Dunin-Borkowski R E, Qin P, Feng J, Zhao L D 2017 J. Am. Chem. Soc 139 9714Google Scholar

  • 图 1  SnSe1.98Br0.02-y%Cu (y = 0, 0.50, 0.75, 1.00)的 (a) 室温XRD和(b) 晶格常数

    Figure 1.  (a) XRD patterns and (b) lattice parameters for SnSe1.98Br0.02-y%Cu (y = 0, 0.50, 0.75, 1.00).

    图 2  SnSe1.98Br0.02-y%Cu沿//P和⊥P方向 (a), (b) 电导率; (c), (d) Seebeck系数; (e), (f) 功率因子

    Figure 2.  (a), (b) Electrical conductivity, (c), (d) Seebeck coefficient and (e), (f) power factor for the samples of SnSe1.98Br0.02-y%Cu samples along the //P and ⊥P directions.

    图 3  (a) SnSe1.98Br0.02-y%Cu样品沿//P和⊥P方向的载流子浓度和载流子迁移率; (b) SnSe2–xBrx和SnSe1.98Br0.02-y%Cu的Seebeck系数随载流子浓度的变化; SnSe1.98Br0.02 [29]和SnSe1.98Br0.02-0.75%Cu样品的(c)载流子浓度和(d)载流子迁移率随温度的变化

    Figure 3.  (a) Carrier concentration and carrier mobility at room temperature for the samples of SnSe1.98Br0.02-y%Cu along the //P and ⊥P directions; (b) Seebeck coefficient as function of carrier concentration; (c) carrier concentration and (d) carrier mobility as function of temperature for SnSe1.98Br0.02[29] and SnSe1.98Br0.02-0.75%Cu samples.

    图 4  (a) Sn18CuSe36沿c轴方向投影的电子局域函数(ELF); (b) Sn18CuSe36的差分电荷密度

    Figure 4.  (a) Electron localization function (ELF) projected along the c-axis and (b) differential charge density of Sn18CuSe36.

    图 5  SnSe1.98Br0.02-y%Cu沿//P和⊥P的总热导率((a), (b))和晶格热导率((c), (d))

    Figure 5.  The temperature dependence of thermal conductivity along the //P and⊥P directions for SnSe1.98Br0.02-y%Cu: (a), (b) Total thermal conductivity; (c), (d) lattice thermal conductivity.

    图 6  SnSe1.98Br0.02-y%Cu的随温度变化的ZT值沿(a) //P方向和(b) ⊥P方向

    Figure 6.  Temperature dependent ZT values along the (a) //P and (b) ⊥P directions for SnSe1.98Br0.02-y%Cu samples.

    Baidu
  • [1]

    Zhang X, Zhao L D 2015 J. Materiomics 1 92Google Scholar

    [2]

    Li J F, Liu W S, Zhao L D, Zhou M 2010 NPG Asia Mater. 2 152Google Scholar

    [3]

    赵立东, 张德培, 赵勇 2015 西华大学学报 (自然科学版) 34 1Google Scholar

    Zhao L D, Zhang D P, Zhao Y 2015 J. Xihua Univ. (Nat. Sci. Ed. ) 34 1Google Scholar

    [4]

    Xiao Y, Zhao L D 2020 Science 367 1196Google Scholar

    [5]

    蒋俊, 许高杰, 崔平, 陈立东 2005 55 4849Google Scholar

    Jiang J, Xu G J, Cui P, Chen L D 2005 Acta Phys. Sin. 55 4849Google Scholar

    [6]

    郑丽仙, 胡剑峰, 骆军 2020 69 247102Google Scholar

    Zheng L X, Hu J F, Luo J 2020 Acta Phys. Sin. 69 247102Google Scholar

    [7]

    赵英浩, 张瑞, 张波萍, 尹阳, 王明军, 梁豆豆 2021 70 128401Google Scholar

    Zhao Y H, Zhang R, Zhang B P, Yin Y, Wang M J, Liang D D 2021 Acta Phys. Sin. 70 128401Google Scholar

    [8]

    Xiao Y, Wang D Y, Zhang Y, Chen C G, Zhang S X, Wang K D, Wang G T, Pennycook S J, Snyder G J, Wu H J, Zhao L D 2020 J. Am. Chem. Soc 142 4051Google Scholar

    [9]

    He W K, Wang D Y, Jun W H, et al. 2019 Science 365 1418Google Scholar

    [10]

    Zhao L D, Chang C, Tan G J, Kanatzidis M G 2016 Energy Environ. Sci. 9 3044Google Scholar

    [11]

    Tan G J, Zhao L D, Kanatzidis M G 2016 Chem. Rev. 116 12123Google Scholar

    [12]

    Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2014 Nature 508 373Google Scholar

    [13]

    Chang C, Wu M H, He D S, Pei Y L, Wu C F, Wu X F, Yu H L, Zhu F Y, Wang K D, Chen Y, Huang L, Li J F, He J Q, Zhao L D 2018 Science 360(SI) 778

    [14]

    Qin B C, Wang D Y, Liu X X, Qin Y X, Dong J F, Luo J F, Li J W, Liu W, Tan G J, Tang X F, Li J F, He J, Zhao L D 2021 Science 373 556Google Scholar

    [15]

    Sun J, Liu S, Wang C, Bai Y, Chen G, Luo Q, Ma F 2020 Appl. Surf. Sci. 510 145478Google Scholar

    [16]

    Wang H F, Gao Y, Liu G 2017 RSC Adv. 7 8098Google Scholar

    [17]

    Pham A T, Vu T H, Chang C, Trinh T L, Lee J E, Ryu H, Hwang C, Mo S K, Kim J, Zhao L D, Duong A T, Cho S 2020 ACS Appl. Energy Mater. 3 10787Google Scholar

    [18]

    Shu Y J, Su X L, Xie H Y, Zheng G, Liu W, Yan Y G, Luo T T, Yang X, Wang D Y, Uher C, Tang X F 2018 ACS Appl. Mater. Interfaces 10 15793Google Scholar

    [19]

    Liu C Y, Huang Z W, Wang D H, Wang X X, Miao L, Wang X Y, Wu S H, Toyama N, Asaka T, Chen J L, Nishibori E, Zhao L D 2019 J. Mater. Chem. A 7 9761Google Scholar

    [20]

    Xu P P, Fu T Z, Xin J Z, Liu Y T, Ying P T, Zhao X B, Pan H G, Zhu T J 2017 Sci. Bull. 62 1663Google Scholar

    [21]

    Luo Y B, Zheng Y, Luo Z Z, Hao S Q, Du C F, Liang Q H, Li Z, Khor K A, Hippalgaonkar K, Xu J W, Yan Q Y, Wolverton C, Kanatzidis M G 2018 Adv. Energy Mater. 8 1702167Google Scholar

    [22]

    施先珍 2014 硕士学位论文 (武汉: 武汉理工大学)

    Shi X Z 2014 M. S. Thesis (Wuhan: Wuhan University of Technology) (in Chinese)

    [23]

    Sun G L, Qin X Y, Li D, Zhang J, Ren B J, Zou T H, Xin H X, Paschen S B, Yan X L 2015 J. Alloys Compd. 639 9Google Scholar

    [24]

    Xiao Y, Wu H J, Li W, Yin M J, Pei Y L, Zhang Y, Fu L W, Chen Y X, Pennycook S J, Huang L, He J Q, Zhao L D 2017 J. Am. Chem. Soc 139 18732Google Scholar

    [25]

    Qin B C, Wang D Y, He W K, Zhang Y, Wu H J, Pennycook S J, Zhao L D 2018 J. Am. Chem. Soc 141 1141Google Scholar

    [26]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [27]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [28]

    John P P, Kieron B, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [29]

    Zhou C, Yu Y, Zhang X, Cheng Y, Xu J, Lee Y K, Yoo B, Cojocaru‐Mirédin O, Liu G, Cho S P, Wuttig M, Hyeon T, Chung In 2019 Adv. Funct. Mater. 30 1908405Google Scholar

    [30]

    Savin A, Jepsen O, Flad J, Andersen O K, Preuss H, von Schnering H G 1992 Angew. Chem. Int. Ed. 31 187Google Scholar

    [31]

    Sun B Z, Ma Z J, He C, Wu K C 2015 Phys. Chem. Chem. Phys. 17 29844Google Scholar

    [32]

    Qian X, Wang D Y, Zhang Y, Wu H J, Pennycook S J, Zheng L, Poudeu P F P, Zhao L D 2020 J. Mater. Chem. A 8 5699Google Scholar

    [33]

    Li C Y, He W K, Wang D Y, Zhao L D 2021 Chin. Phys. B 30 067101Google Scholar

    [34]

    Yamamoto M, Ohta H, Koumoto K 2007 Appl. Phys. Lett. 90 072101Google Scholar

    [35]

    Zhao L D, Zhang B P, Liu W S, Zhang H L, Li J F 2008 J. Solid State Chem. 181 3278Google Scholar

    [36]

    Pei Y L, He J Q, Li J F, Li F, Liu Q J, Pan W, Barreteau C, Berardan D, Dragoe N, Zhao L D 2013 NPG Asia Mater. 5 e47Google Scholar

    [37]

    Ge Z H, Song D, Chong X, Zheng F, Jin L, Qian X, Zheng L, Dunin-Borkowski R E, Qin P, Feng J, Zhao L D 2017 J. Am. Chem. Soc 139 9714Google Scholar

  • [1] Li Qiang, Chen Shuo, Liu Ke-Ke, Lu Zhi-Qiang, Hu Qin, Feng Li-Ping, Zhang Qing-Jie, Wu Jin-Song, Su Xian-Li, Tang Xin-Feng. Donor-like effect and thermoelectric properties in n-type Bi2Te3-based compounds. Acta Physica Sinica, 2023, 72(9): 097101. doi: 10.7498/aps.72.20230231
    [2] Wang Jing-Li, Yang Zhi-Xiong, Dong Xian-Chao, Yin Liang, Wan Hong-Dan, Chen He-Ming, Zhong Kai. VO2 based terahertz anisotropic coding metasurface. Acta Physica Sinica, 2023, 72(12): 124204. doi: 10.7498/aps.72.20222171
    [3] Chen Shang-Feng, Sun Nai-Kun, Zhang Xian-Min, Wang Kai, Li Wu, Han Yan, Wu Li-Jun, Dai Qin. Preparation and thermoelectric properties of Mn3As2-doped Cd3As2 nanostructures. Acta Physica Sinica, 2022, 71(18): 187201. doi: 10.7498/aps.71.20220584
    [4] Wang Mo-Fan, Ying Peng-Zhan, Li Xie, Cui Jiao-Lin. Polycomponent doping improved thermoelectric performance of Cu3SbSe4-based solid solutions. Acta Physica Sinica, 2021, 70(10): 107303. doi: 10.7498/aps.70.20202094
    [5] Zou Ping, Lü Dan, Xu Gui-Ying. Microstructure and thermoelectric property of (Bi1–xTbx)2(Te0.9Se0.1)3 fabricated by high pressure sintering technique. Acta Physica Sinica, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [6] Ouyang Hao, Hu Si-Yang, Shen Man-Ling, Zhang Chen-Xi, Cheng Xiang-Ai, Jiang Tian. Polarization-dependent nonlinear optical response in GeSe2. Acta Physica Sinica, 2020, 69(18): 184212. doi: 10.7498/aps.69.20200443
    [7] Zheng Li-Xian, Hu Jian-Feng, Luo Jun. Thermoelectric properties of Cu-doped Cu2SnSe4 compounds. Acta Physica Sinica, 2020, 69(24): 247102. doi: 10.7498/aps.69.20200861
    [8] Yuan Guo-Cai, Chen Xi, Huang Yu-Yang, Mao Jun-Xi, Yu Jin-Qiu, Lei Xiao-Bo, Zhang Qin-Yong. Comparative study of thermoelectric properties of Mg2Si0.3Sn0.7 doped by Ag or Li. Acta Physica Sinica, 2019, 68(11): 117201. doi: 10.7498/aps.68.20190247
    [9] Chen Luo-Na, Liu Ye-Feng, Zhang Ji-Ye, Yang Jiong, Xing Juan-Juan, Luo Jun, Zhang Wen-Qing. Effect of Ga doping on the thermoelectric performance of Cu3SbSe4. Acta Physica Sinica, 2017, 66(16): 167201. doi: 10.7498/aps.66.167201
    [10] Sun Zheng, Chen Shao-Ping, Yang Jiang-Feng, Meng Qing-Sen, Cui Jiao-Lin. Thermoelectric properties of chalcopyrite Cu3Ga5Te9 with Sb non-isoelectronic substitution for Cu and Te. Acta Physica Sinica, 2014, 63(5): 057201. doi: 10.7498/aps.63.057201
    [11] Wu Zi-Hua, Xie Hua-Qing. Study on the preparation and properties of polyparaphenylene/LiNi0.5Fe2O4 anocomposite thermoelectric materials. Acta Physica Sinica, 2012, 61(7): 076502. doi: 10.7498/aps.61.076502
    [12] Zhang Yong-Wei, Yin Chun-Hao, Zhao Qiang, Li Fu-Qiang, Zhu Shan-Shan, Liu Hai-Shun. Theoretical research of correlation of electronic structure with birefringence and anisotropy of TiO2. Acta Physica Sinica, 2012, 61(2): 027801. doi: 10.7498/aps.61.027801
    [13] Huo Feng-Ping, Wu Rong-Gui, Xu Gui-Ying, Niu Si-Tong. Thermoelectric properties of (AgSbTe2)100-x (GeTe)x fabricated by hot pressing method. Acta Physica Sinica, 2012, 61(8): 087202. doi: 10.7498/aps.61.087202
    [14] Zhang He, Luo Jun, Zhu Hang-Tian, Liu Quan-Lin, Liang Jing-Kui, Rao Guang-Hui. Phase stability, crystal structure and thermoelectric properties of Cu doped AgSbTe2. Acta Physica Sinica, 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [15] Tang Xin-Feng, Du Bao-Li, Xu Jing-Jing, Yan Yong-Gao. Synthesis and thermoelectric properties of nonstoichiometric AgSbTe2+ x compounds. Acta Physica Sinica, 2011, 60(1): 018403. doi: 10.7498/aps.60.018403
    [16] Wang Shan-Yu, Xie Wen-Jie, Li Han, Tang Xin-Feng. Microstructures and thermoelectric properties of n-type melting spun(Bi0.85Sb0.15)2(Te1-xSex)3 compounds. Acta Physica Sinica, 2010, 59(12): 8927-8933. doi: 10.7498/aps.59.8927
    [17] Wan Yong, Han Wen-Juan, Liu Jun-Hai, Xia Lin-Hua, Xavier Mateos, Valentin Petrov, Zhang Huai-Jin, Wang Ji-Yang. Anisotropy in spectroscopic and laser properties of monoclinic Yb:KLu(WO4)2 crystal. Acta Physica Sinica, 2009, 58(1): 278-284. doi: 10.7498/aps.58.278.1
    [18] Shi Li-Bin, Ren Jun-Yuan, Zhang Feng-Yun, Zhang Guo-Hua, Yu Zeng-Qiang. A study on resistive transition and anisotropy of MgB2/Al2O3 superconducting thin films. Acta Physica Sinica, 2007, 56(9): 5353-5358. doi: 10.7498/aps.56.5353
    [19] Mu Quan-Quan, Liu Yong-Jun, Hu Li-Fa, Li Da-Yu, Cao Zhao-Liang, Xuan Li. Determination of anisotropic liquid crystal layer parameters by spectroscopic ellipsometer. Acta Physica Sinica, 2006, 55(3): 1055-1060. doi: 10.7498/aps.55.1055
    [20] Li An-Hua, Dong Sheng-Zhi, Li Wei. . Acta Physica Sinica, 2002, 51(10): 2320-2324. doi: 10.7498/aps.51.2320
  • supplement 20-20211444-2附加材料.pdf supplement
Metrics
  • Abstract views:  5695
  • PDF Downloads:  242
  • Cited By: 0
Publishing process
  • Received Date:  05 August 2021
  • Accepted Date:  25 August 2021
  • Available Online:  07 September 2021
  • Published Online:  20 October 2021

/

返回文章
返回
Baidu
map