-
SnSe, a layered material with intrinsic low thermal conductivity, is reported to have excellent thermoelectric properties. SnSe2 has a similar structure to SnSe, but the SnSe2 has a low electrical transport, resulting in a poor thermoelectric performance, and the intrinsic SnSe2 has a maximum ZT value of only ~ 0.09 at 773 K. In this work, SnSe1.98Br0.02-y%Cu (y = 0, 0.50, 0.75, 1.0) bulk materials are synthesized by the melting method combined with spark plasma sintering (SPS) based on the carrier concentration improved through Br doping. In the SnSe2 materials with van der Waals chemical bonding between layers, the synergistic effects of intercalating Cu on the thermoelectric properties are investigated. On the one hand, the extra Cu not only provides additional electrons but also can be embedded stably in the van der Waals gap and form an intercalated structure, which is beneficial to the charge transfer in or out of the layers, and thus synergistically improving the carrier concentration and carrier mobility. On the other hand, owing to the dynamic Cu doping, the increase of carrier concentration compensates for the decrease of carrier mobility caused by carrier-carrier scattering, which maintains the high electrical transport properties at high temperature. The present results show that at room temperature, the power factors along the parallel and perpendicular to the SPS (//P and ⊥P) sintering directions increase from ~0.65 and ~0.98 µW·cm–1·K–2 for intrinsic SnSe2 to ~10 and ~19 μW·cm–1·K–2 for SnSe1.98Br0.02-0.75%Cu samples, respectively. Finally, at 773 K, the maximum ZT value of ~0.8 is achieved along the ⊥P direction. This study proves that the SnSe2 greatly promises to become an excellent thermoelectric material.
-
Keywords:
- SnSe2 /
- thermoelectric properties /
- Cu intercalation /
- anisotropic structure
[1] Zhang X, Zhao L D 2015 J. Materiomics 1 92Google Scholar
[2] Li J F, Liu W S, Zhao L D, Zhou M 2010 NPG Asia Mater. 2 152Google Scholar
[3] 赵立东, 张德培, 赵勇 2015 西华大学学报 (自然科学版) 34 1Google Scholar
Zhao L D, Zhang D P, Zhao Y 2015 J. Xihua Univ. (Nat. Sci. Ed. ) 34 1Google Scholar
[4] Xiao Y, Zhao L D 2020 Science 367 1196Google Scholar
[5] 蒋俊, 许高杰, 崔平, 陈立东 2005 55 4849Google Scholar
Jiang J, Xu G J, Cui P, Chen L D 2005 Acta Phys. Sin. 55 4849Google Scholar
[6] 郑丽仙, 胡剑峰, 骆军 2020 69 247102Google Scholar
Zheng L X, Hu J F, Luo J 2020 Acta Phys. Sin. 69 247102Google Scholar
[7] 赵英浩, 张瑞, 张波萍, 尹阳, 王明军, 梁豆豆 2021 70 128401Google Scholar
Zhao Y H, Zhang R, Zhang B P, Yin Y, Wang M J, Liang D D 2021 Acta Phys. Sin. 70 128401Google Scholar
[8] Xiao Y, Wang D Y, Zhang Y, Chen C G, Zhang S X, Wang K D, Wang G T, Pennycook S J, Snyder G J, Wu H J, Zhao L D 2020 J. Am. Chem. Soc 142 4051Google Scholar
[9] He W K, Wang D Y, Jun W H, et al. 2019 Science 365 1418Google Scholar
[10] Zhao L D, Chang C, Tan G J, Kanatzidis M G 2016 Energy Environ. Sci. 9 3044Google Scholar
[11] Tan G J, Zhao L D, Kanatzidis M G 2016 Chem. Rev. 116 12123Google Scholar
[12] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2014 Nature 508 373Google Scholar
[13] Chang C, Wu M H, He D S, Pei Y L, Wu C F, Wu X F, Yu H L, Zhu F Y, Wang K D, Chen Y, Huang L, Li J F, He J Q, Zhao L D 2018 Science 360(SI) 778
[14] Qin B C, Wang D Y, Liu X X, Qin Y X, Dong J F, Luo J F, Li J W, Liu W, Tan G J, Tang X F, Li J F, He J, Zhao L D 2021 Science 373 556Google Scholar
[15] Sun J, Liu S, Wang C, Bai Y, Chen G, Luo Q, Ma F 2020 Appl. Surf. Sci. 510 145478Google Scholar
[16] Wang H F, Gao Y, Liu G 2017 RSC Adv. 7 8098Google Scholar
[17] Pham A T, Vu T H, Chang C, Trinh T L, Lee J E, Ryu H, Hwang C, Mo S K, Kim J, Zhao L D, Duong A T, Cho S 2020 ACS Appl. Energy Mater. 3 10787Google Scholar
[18] Shu Y J, Su X L, Xie H Y, Zheng G, Liu W, Yan Y G, Luo T T, Yang X, Wang D Y, Uher C, Tang X F 2018 ACS Appl. Mater. Interfaces 10 15793Google Scholar
[19] Liu C Y, Huang Z W, Wang D H, Wang X X, Miao L, Wang X Y, Wu S H, Toyama N, Asaka T, Chen J L, Nishibori E, Zhao L D 2019 J. Mater. Chem. A 7 9761Google Scholar
[20] Xu P P, Fu T Z, Xin J Z, Liu Y T, Ying P T, Zhao X B, Pan H G, Zhu T J 2017 Sci. Bull. 62 1663Google Scholar
[21] Luo Y B, Zheng Y, Luo Z Z, Hao S Q, Du C F, Liang Q H, Li Z, Khor K A, Hippalgaonkar K, Xu J W, Yan Q Y, Wolverton C, Kanatzidis M G 2018 Adv. Energy Mater. 8 1702167Google Scholar
[22] 施先珍 2014 硕士学位论文 (武汉: 武汉理工大学)
Shi X Z 2014 M. S. Thesis (Wuhan: Wuhan University of Technology) (in Chinese)
[23] Sun G L, Qin X Y, Li D, Zhang J, Ren B J, Zou T H, Xin H X, Paschen S B, Yan X L 2015 J. Alloys Compd. 639 9Google Scholar
[24] Xiao Y, Wu H J, Li W, Yin M J, Pei Y L, Zhang Y, Fu L W, Chen Y X, Pennycook S J, Huang L, He J Q, Zhao L D 2017 J. Am. Chem. Soc 139 18732Google Scholar
[25] Qin B C, Wang D Y, He W K, Zhang Y, Wu H J, Pennycook S J, Zhao L D 2018 J. Am. Chem. Soc 141 1141Google Scholar
[26] Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar
[27] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar
[28] John P P, Kieron B, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[29] Zhou C, Yu Y, Zhang X, Cheng Y, Xu J, Lee Y K, Yoo B, Cojocaru‐Mirédin O, Liu G, Cho S P, Wuttig M, Hyeon T, Chung In 2019 Adv. Funct. Mater. 30 1908405Google Scholar
[30] Savin A, Jepsen O, Flad J, Andersen O K, Preuss H, von Schnering H G 1992 Angew. Chem. Int. Ed. 31 187Google Scholar
[31] Sun B Z, Ma Z J, He C, Wu K C 2015 Phys. Chem. Chem. Phys. 17 29844Google Scholar
[32] Qian X, Wang D Y, Zhang Y, Wu H J, Pennycook S J, Zheng L, Poudeu P F P, Zhao L D 2020 J. Mater. Chem. A 8 5699Google Scholar
[33] Li C Y, He W K, Wang D Y, Zhao L D 2021 Chin. Phys. B 30 067101Google Scholar
[34] Yamamoto M, Ohta H, Koumoto K 2007 Appl. Phys. Lett. 90 072101Google Scholar
[35] Zhao L D, Zhang B P, Liu W S, Zhang H L, Li J F 2008 J. Solid State Chem. 181 3278Google Scholar
[36] Pei Y L, He J Q, Li J F, Li F, Liu Q J, Pan W, Barreteau C, Berardan D, Dragoe N, Zhao L D 2013 NPG Asia Mater. 5 e47Google Scholar
[37] Ge Z H, Song D, Chong X, Zheng F, Jin L, Qian X, Zheng L, Dunin-Borkowski R E, Qin P, Feng J, Zhao L D 2017 J. Am. Chem. Soc 139 9714Google Scholar
-
图 3 (a) SnSe1.98Br0.02-y%Cu样品沿//P和⊥P方向的载流子浓度和载流子迁移率; (b) SnSe2–xBrx和SnSe1.98Br0.02-y%Cu的Seebeck系数随载流子浓度的变化; SnSe1.98Br0.02 [29]和SnSe1.98Br0.02-0.75%Cu样品的(c)载流子浓度和(d)载流子迁移率随温度的变化
Figure 3. (a) Carrier concentration and carrier mobility at room temperature for the samples of SnSe1.98Br0.02-y%Cu along the //P and ⊥P directions; (b) Seebeck coefficient as function of carrier concentration; (c) carrier concentration and (d) carrier mobility as function of temperature for SnSe1.98Br0.02[29] and SnSe1.98Br0.02-0.75%Cu samples.
-
[1] Zhang X, Zhao L D 2015 J. Materiomics 1 92Google Scholar
[2] Li J F, Liu W S, Zhao L D, Zhou M 2010 NPG Asia Mater. 2 152Google Scholar
[3] 赵立东, 张德培, 赵勇 2015 西华大学学报 (自然科学版) 34 1Google Scholar
Zhao L D, Zhang D P, Zhao Y 2015 J. Xihua Univ. (Nat. Sci. Ed. ) 34 1Google Scholar
[4] Xiao Y, Zhao L D 2020 Science 367 1196Google Scholar
[5] 蒋俊, 许高杰, 崔平, 陈立东 2005 55 4849Google Scholar
Jiang J, Xu G J, Cui P, Chen L D 2005 Acta Phys. Sin. 55 4849Google Scholar
[6] 郑丽仙, 胡剑峰, 骆军 2020 69 247102Google Scholar
Zheng L X, Hu J F, Luo J 2020 Acta Phys. Sin. 69 247102Google Scholar
[7] 赵英浩, 张瑞, 张波萍, 尹阳, 王明军, 梁豆豆 2021 70 128401Google Scholar
Zhao Y H, Zhang R, Zhang B P, Yin Y, Wang M J, Liang D D 2021 Acta Phys. Sin. 70 128401Google Scholar
[8] Xiao Y, Wang D Y, Zhang Y, Chen C G, Zhang S X, Wang K D, Wang G T, Pennycook S J, Snyder G J, Wu H J, Zhao L D 2020 J. Am. Chem. Soc 142 4051Google Scholar
[9] He W K, Wang D Y, Jun W H, et al. 2019 Science 365 1418Google Scholar
[10] Zhao L D, Chang C, Tan G J, Kanatzidis M G 2016 Energy Environ. Sci. 9 3044Google Scholar
[11] Tan G J, Zhao L D, Kanatzidis M G 2016 Chem. Rev. 116 12123Google Scholar
[12] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2014 Nature 508 373Google Scholar
[13] Chang C, Wu M H, He D S, Pei Y L, Wu C F, Wu X F, Yu H L, Zhu F Y, Wang K D, Chen Y, Huang L, Li J F, He J Q, Zhao L D 2018 Science 360(SI) 778
[14] Qin B C, Wang D Y, Liu X X, Qin Y X, Dong J F, Luo J F, Li J W, Liu W, Tan G J, Tang X F, Li J F, He J, Zhao L D 2021 Science 373 556Google Scholar
[15] Sun J, Liu S, Wang C, Bai Y, Chen G, Luo Q, Ma F 2020 Appl. Surf. Sci. 510 145478Google Scholar
[16] Wang H F, Gao Y, Liu G 2017 RSC Adv. 7 8098Google Scholar
[17] Pham A T, Vu T H, Chang C, Trinh T L, Lee J E, Ryu H, Hwang C, Mo S K, Kim J, Zhao L D, Duong A T, Cho S 2020 ACS Appl. Energy Mater. 3 10787Google Scholar
[18] Shu Y J, Su X L, Xie H Y, Zheng G, Liu W, Yan Y G, Luo T T, Yang X, Wang D Y, Uher C, Tang X F 2018 ACS Appl. Mater. Interfaces 10 15793Google Scholar
[19] Liu C Y, Huang Z W, Wang D H, Wang X X, Miao L, Wang X Y, Wu S H, Toyama N, Asaka T, Chen J L, Nishibori E, Zhao L D 2019 J. Mater. Chem. A 7 9761Google Scholar
[20] Xu P P, Fu T Z, Xin J Z, Liu Y T, Ying P T, Zhao X B, Pan H G, Zhu T J 2017 Sci. Bull. 62 1663Google Scholar
[21] Luo Y B, Zheng Y, Luo Z Z, Hao S Q, Du C F, Liang Q H, Li Z, Khor K A, Hippalgaonkar K, Xu J W, Yan Q Y, Wolverton C, Kanatzidis M G 2018 Adv. Energy Mater. 8 1702167Google Scholar
[22] 施先珍 2014 硕士学位论文 (武汉: 武汉理工大学)
Shi X Z 2014 M. S. Thesis (Wuhan: Wuhan University of Technology) (in Chinese)
[23] Sun G L, Qin X Y, Li D, Zhang J, Ren B J, Zou T H, Xin H X, Paschen S B, Yan X L 2015 J. Alloys Compd. 639 9Google Scholar
[24] Xiao Y, Wu H J, Li W, Yin M J, Pei Y L, Zhang Y, Fu L W, Chen Y X, Pennycook S J, Huang L, He J Q, Zhao L D 2017 J. Am. Chem. Soc 139 18732Google Scholar
[25] Qin B C, Wang D Y, He W K, Zhang Y, Wu H J, Pennycook S J, Zhao L D 2018 J. Am. Chem. Soc 141 1141Google Scholar
[26] Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar
[27] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar
[28] John P P, Kieron B, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[29] Zhou C, Yu Y, Zhang X, Cheng Y, Xu J, Lee Y K, Yoo B, Cojocaru‐Mirédin O, Liu G, Cho S P, Wuttig M, Hyeon T, Chung In 2019 Adv. Funct. Mater. 30 1908405Google Scholar
[30] Savin A, Jepsen O, Flad J, Andersen O K, Preuss H, von Schnering H G 1992 Angew. Chem. Int. Ed. 31 187Google Scholar
[31] Sun B Z, Ma Z J, He C, Wu K C 2015 Phys. Chem. Chem. Phys. 17 29844Google Scholar
[32] Qian X, Wang D Y, Zhang Y, Wu H J, Pennycook S J, Zheng L, Poudeu P F P, Zhao L D 2020 J. Mater. Chem. A 8 5699Google Scholar
[33] Li C Y, He W K, Wang D Y, Zhao L D 2021 Chin. Phys. B 30 067101Google Scholar
[34] Yamamoto M, Ohta H, Koumoto K 2007 Appl. Phys. Lett. 90 072101Google Scholar
[35] Zhao L D, Zhang B P, Liu W S, Zhang H L, Li J F 2008 J. Solid State Chem. 181 3278Google Scholar
[36] Pei Y L, He J Q, Li J F, Li F, Liu Q J, Pan W, Barreteau C, Berardan D, Dragoe N, Zhao L D 2013 NPG Asia Mater. 5 e47Google Scholar
[37] Ge Z H, Song D, Chong X, Zheng F, Jin L, Qian X, Zheng L, Dunin-Borkowski R E, Qin P, Feng J, Zhao L D 2017 J. Am. Chem. Soc 139 9714Google Scholar
-
20-20211444-2附加材料.pdf
Catalog
Metrics
- Abstract views: 5695
- PDF Downloads: 242
- Cited By: 0