Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High temperature thermoelectric performance of Ca2+ doped CdO ceramics

Liu Ran Gao Lin-Jie Li Long-Jiang Zhai Sheng-Jun Wang Jiang-Long Fu Guang-Sheng Wang Shu-Fang

Citation:

High temperature thermoelectric performance of Ca2+ doped CdO ceramics

Liu Ran, Gao Lin-Jie, Li Long-Jiang, Zhai Sheng-Jun, Wang Jiang-Long, Fu Guang-Sheng, Wang Shu-Fang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Oxide thermoelectric materials have been considered to be potential candidates in high-temperature thermoelectric power generation, however, their high thermal conductivity renders them inferior to the conventional thermoelectric materials and limit their practical application. In this paper, we successfully reduce the thermal conductivity of CdO polycrystals through Ca2+ doping, and the improvement in ZT is also obtained due to the low thermal conductivity. Cd1-xCaxO (x=0, 0.01, 0.03, 0.08) polycrystals are synthesized by adding CaCO3 into CdO via conventional solid-state reaction method and their high-temperature thermoelectric properties are studied. XRD results reveal that all samples are composed of CdO polycrystals, and the lattice parameters increase with Ca2+ content due to the larger radius of Ca2+ as compared with that of Cd2+. Addition of CaCO3 can induce the formation of point defects as well as pores in the CdO polycrystals, thus inhibits the grain growth of CdO and induces the increase of grain boundaries. The main electron carriers in CdO are reported to be shallow level donor impurities formed by oxygen vacancies; as the Ca2+ concentration in Cd1-xCaxO increases, the conduction band minimum of the samples shifts upward and the level of donor impurity becomes deeper, finally resulting in the decrease of electron carrier concentration. Meanwhile, the reduced carrier concentration in the doped samples leads to the increase of both the electrical resistivity ρ and the absolute Seebeck coefficient |S|, while the electrical thermal conductivity κ e will decrease with increasing Ca content. Investigations on the thermal properties of the obtained samples demonstrate that the introduction of Ca2+ is effective to suppress the thermal conductivity. The increment of pores and grain boundaries in the doped samples will enhance the long-wavelength phonon scattering, resulting in the decrease of phonon thermal conductivity κ p. Furthermore, the point defects, which come from the mass and size differences between Ca and Cd atoms, also act as scattering centers and lead to a considerable decrease in phonon thermal conductivity. Due to the simultaneous reduction of both electrical and phonon thermal conductivity, the total thermal conductivity κ may substantially be suppressed, for example, the total thermal conductivity of Cd0.95Ca0.05O reaches 2.2 W·m-1·K-1 at 1000 K, a remarkable decrease as compared with pristine CdO, which is 3.6 W·m-1·K-1 measured at the same temperature. Benefiting from the drastically reduced thermal conductivity, Cd0.99Ca0.01O polycrystals can achieve a high ZT of 0.42 at 1000 K, 27% higher than the pure CdO, which is one of the best n-type oxide TE materials reported so far.
      Corresponding author: Gao Lin-Jie, LinjieGao@hotmail.com;sfwang@hbu.edu.cn ; Wang Shu-Fang, LinjieGao@hotmail.com;sfwang@hbu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51372064), and the Fund for Distinguished Young Scholars of Hebei Province, China (Grant No. 2013201249).
    [1]

    Zhang X, Ma X Y, Zhang F P, Wu P X, Lu Q M, Liu Y Q, Zhang J X 2012 Acta Phys. Sin. 61 047201 (in Chinese) [张忻, 马旭颐, 张飞鹏, 武鹏旭, 路清梅, 刘燕琴, 张久兴 2012 61 047201]

    [2]

    Heremans P J, Jovovic V, Toberer S E, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder J G 2008 Science 321 554

    [3]

    He Y, Day T, Zhang T S, Liu H L, Shi X, Chen L D, Snyder J G 2014 Adv. Mater. 26 3974

    [4]

    Zhang H, Luo J, Zhu H T, Liu Q L, Liang J K, Rao G H 2012 Acta Phys. Sin. 61 086101 (in Chinese) [张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉 2012 61 086101]

    [5]

    Ohta H, Kim S, Komune Y, Mizoguchi T, Nomura K, Ohta S, Momura T, Ikuhara Y, Hirano M, Hosono H, Koumoto K 2007 Nat. Mater. 6 129

    [6]

    Lan J L, Liu Y C, Zhan B, Lin Y H, Zhang B P, Yuan X, Zhang W Q, Xu W, Nan C W 2013 Adv. Mater. 25 5086

    [7]

    Zhu X B, Shi D Q, Dou S X, Sun Y P, Li Q, Wang L, Li W X, Yeoh W K, Zheng R K, Chen Z X, Kong C X 2010 Acta Mater. 58 4281

    [8]

    Wang H C, Wang C L, Su W B, Liu J, Sun Y, Peng H, Zhang J L, Zhao M L, Li J C, Yin N, Mei L M 2011 Acta Phys. Sin. 60 087203 (in Chinese) [王洪超, 王春雷, 苏文斌, 刘剑, 孙毅, 彭华, 张家良, 赵明磊, 李吉超, 尹娜, 梅良模 2011 60 087203]

    [9]

    Wu Z H, Xie H Q, Zhai Y B, Gan L H, Liu J 2015 Chin. Phys. B 24 034402

    [10]

    Ohtaki M, Araki K, Yamamoto K 2009 J. Electron. Mater. 38 1234

    [11]

    B'erardan D, Guilmeau E, Maignan A, Raveau B 2008 Solid State Commun. 146 97

    [12]

    Liu Y, Lin Y H, Lan J L, Xu W, Zhang B P, Nan C W, Zhu H M 2010 J. Am. Ceram. Soc. 93 2938

    [13]

    Lubeck C R, Han T Y-J, Gash A E, Satcher J H, Jr, Doyle F M 2006 Adv. Mater. 18 781

    [14]

    Yu H J, Jeong M, Lim Y S, Seo W-S, Kwon O-J, Park C-H, Hwang H-J 2014 RSC Adv. 4 43811

    [15]

    Wang S F, Liu F Q, L Q, Dai S Y, Wang J L, Yu W, Fu G S 2013 J. Eur. Ceram. Soc. 33 1763

    [16]

    Wang S F, L Q, Li L J, Fu G S, Liu F Q, Dai S Y, Yu W, Wang J L 2013 Scripta Mater. 69 533

    [17]

    Li L J, Liang S, Li S M, Wang J L, Wang S F, Dong G Y, Fu G S 2014 Nanotechnology 25 425402

    [18]

    Ohta S, Nomura T 2005 Appl. Phys. Lett. 87 092108

    [19]

    Bocher L, Aguirre M H, Logvinovich D, Shkabko A, Robert R, Trottmann M, Weidenkaff A 2008 Inorg. Chem. 47 8077

    [20]

    Lan J-L, Liu Y, Lin Y-H, Nan C-W, Cai Q, Yang X 2015 Sci. Rep. 5 7783

    [21]

    Lin C-J, Wei W-C J 2008 Mater. Chem. Phys. 111 82

    [22]

    Park K, Seong J K, Kim G H 2009 J. Alloys Compd. 473 423

    [23]

    Liu H, Fang L, Wu F, Tian D X, Li W J, Lu Y, Kong C Y, Hang S F 2014 Surf. Rev. Lett. 21 1450033

    [24]

    Burbano M, Scanlon D O, Watson G W 2011 J. Am. Chem. Soc. 133 15065

    [25]

    Pelatt B D, Ravichandran R, Wager J F, Keszler D A 2011 J. Am. Chem. Soc. 133 16852

    [26]

    Francis C A, Detert D M, Chen G, Dubon O D, Yu K M, Walukiewicz W 2015 Appl. Phys. Lett. 106 022110

    [27]

    Guibin C, Yu K M, Reichertz L A, Walukiewicz W 2013 Appl. Phys. Lett. 103 041902

    [28]

    Mun H, Choi S-M, Lee K H, Kim S W ChemSusChem. Published online: 17 MAR 2015, DOI: 10. 1002/cssc. 201403485

    [29]

    Zhou X, Wang G, Zhang L, Chi H, Su X, Sakamotob J, Uher C 2012 J. Mater. Chem. 22 2958

    [30]

    He Q Y, Hu S J, Tang X G, Lan Y C, Yang J, Wang X W, Ren Z F, Hao Q, Che G 2008 Appl. Phys. Lett. 93 042108

    [31]

    Wan C L, Pan W, Xu Q, Qin Y X, Wang J D, Qu Z X, Fang M H 2006 Phys. Rev. B 74 144109

  • [1]

    Zhang X, Ma X Y, Zhang F P, Wu P X, Lu Q M, Liu Y Q, Zhang J X 2012 Acta Phys. Sin. 61 047201 (in Chinese) [张忻, 马旭颐, 张飞鹏, 武鹏旭, 路清梅, 刘燕琴, 张久兴 2012 61 047201]

    [2]

    Heremans P J, Jovovic V, Toberer S E, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder J G 2008 Science 321 554

    [3]

    He Y, Day T, Zhang T S, Liu H L, Shi X, Chen L D, Snyder J G 2014 Adv. Mater. 26 3974

    [4]

    Zhang H, Luo J, Zhu H T, Liu Q L, Liang J K, Rao G H 2012 Acta Phys. Sin. 61 086101 (in Chinese) [张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉 2012 61 086101]

    [5]

    Ohta H, Kim S, Komune Y, Mizoguchi T, Nomura K, Ohta S, Momura T, Ikuhara Y, Hirano M, Hosono H, Koumoto K 2007 Nat. Mater. 6 129

    [6]

    Lan J L, Liu Y C, Zhan B, Lin Y H, Zhang B P, Yuan X, Zhang W Q, Xu W, Nan C W 2013 Adv. Mater. 25 5086

    [7]

    Zhu X B, Shi D Q, Dou S X, Sun Y P, Li Q, Wang L, Li W X, Yeoh W K, Zheng R K, Chen Z X, Kong C X 2010 Acta Mater. 58 4281

    [8]

    Wang H C, Wang C L, Su W B, Liu J, Sun Y, Peng H, Zhang J L, Zhao M L, Li J C, Yin N, Mei L M 2011 Acta Phys. Sin. 60 087203 (in Chinese) [王洪超, 王春雷, 苏文斌, 刘剑, 孙毅, 彭华, 张家良, 赵明磊, 李吉超, 尹娜, 梅良模 2011 60 087203]

    [9]

    Wu Z H, Xie H Q, Zhai Y B, Gan L H, Liu J 2015 Chin. Phys. B 24 034402

    [10]

    Ohtaki M, Araki K, Yamamoto K 2009 J. Electron. Mater. 38 1234

    [11]

    B'erardan D, Guilmeau E, Maignan A, Raveau B 2008 Solid State Commun. 146 97

    [12]

    Liu Y, Lin Y H, Lan J L, Xu W, Zhang B P, Nan C W, Zhu H M 2010 J. Am. Ceram. Soc. 93 2938

    [13]

    Lubeck C R, Han T Y-J, Gash A E, Satcher J H, Jr, Doyle F M 2006 Adv. Mater. 18 781

    [14]

    Yu H J, Jeong M, Lim Y S, Seo W-S, Kwon O-J, Park C-H, Hwang H-J 2014 RSC Adv. 4 43811

    [15]

    Wang S F, Liu F Q, L Q, Dai S Y, Wang J L, Yu W, Fu G S 2013 J. Eur. Ceram. Soc. 33 1763

    [16]

    Wang S F, L Q, Li L J, Fu G S, Liu F Q, Dai S Y, Yu W, Wang J L 2013 Scripta Mater. 69 533

    [17]

    Li L J, Liang S, Li S M, Wang J L, Wang S F, Dong G Y, Fu G S 2014 Nanotechnology 25 425402

    [18]

    Ohta S, Nomura T 2005 Appl. Phys. Lett. 87 092108

    [19]

    Bocher L, Aguirre M H, Logvinovich D, Shkabko A, Robert R, Trottmann M, Weidenkaff A 2008 Inorg. Chem. 47 8077

    [20]

    Lan J-L, Liu Y, Lin Y-H, Nan C-W, Cai Q, Yang X 2015 Sci. Rep. 5 7783

    [21]

    Lin C-J, Wei W-C J 2008 Mater. Chem. Phys. 111 82

    [22]

    Park K, Seong J K, Kim G H 2009 J. Alloys Compd. 473 423

    [23]

    Liu H, Fang L, Wu F, Tian D X, Li W J, Lu Y, Kong C Y, Hang S F 2014 Surf. Rev. Lett. 21 1450033

    [24]

    Burbano M, Scanlon D O, Watson G W 2011 J. Am. Chem. Soc. 133 15065

    [25]

    Pelatt B D, Ravichandran R, Wager J F, Keszler D A 2011 J. Am. Chem. Soc. 133 16852

    [26]

    Francis C A, Detert D M, Chen G, Dubon O D, Yu K M, Walukiewicz W 2015 Appl. Phys. Lett. 106 022110

    [27]

    Guibin C, Yu K M, Reichertz L A, Walukiewicz W 2013 Appl. Phys. Lett. 103 041902

    [28]

    Mun H, Choi S-M, Lee K H, Kim S W ChemSusChem. Published online: 17 MAR 2015, DOI: 10. 1002/cssc. 201403485

    [29]

    Zhou X, Wang G, Zhang L, Chi H, Su X, Sakamotob J, Uher C 2012 J. Mater. Chem. 22 2958

    [30]

    He Q Y, Hu S J, Tang X G, Lan Y C, Yang J, Wang X W, Ren Z F, Hao Q, Che G 2008 Appl. Phys. Lett. 93 042108

    [31]

    Wan C L, Pan W, Xu Q, Qin Y X, Wang J D, Qu Z X, Fang M H 2006 Phys. Rev. B 74 144109

  • [1] Ma Yun-Peng, Zhuang Hua-Lu, Li Jing-Feng, Li Qian. Strain-enhanced thermoelectric properties of Nb-doped SrTiO3 thin films. Acta Physica Sinica, 2023, 72(9): 096803. doi: 10.7498/aps.72.20222301
    [2] Zheng Jian-Jun, Zhang Li-Ping. Thermoelectric properties of monolayer Cu2X. Acta Physica Sinica, 2023, 72(8): 086301. doi: 10.7498/aps.72.20222015
    [3] Zheng Jian-Jun, Zhang Li-Ping. Monolayer Cu2X (X=S, Se): excellent thermoelectric material with low lattice thermal conductivity. Acta Physica Sinica, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20220015
    [4] Zheng Cui-Hong, Yang Jian, Xie Guo-Feng, Zhou Wu-Xing, Ouyang Tao. Effect of ion irradiation on thermal conductivity of phosphorene and underlying mechanism. Acta Physica Sinica, 2022, 71(5): 056101. doi: 10.7498/aps.71.20211857
    [5] Li Meng-Rong, Ying Peng-Zhan, Li Xie, Cui Jiao-Lin. Improvement of thermoelectric performance of SnTe-based solid solution by entropy engineering. Acta Physica Sinica, 2022, 71(23): 237302. doi: 10.7498/aps.71.20221247
    [6] Effect of ion irradiation on thermal conductivity of phosphorene and underlying mechanism. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211857
    [7] Wang Mo-Fan, Ying Peng-Zhan, Li Xie, Cui Jiao-Lin. Polycomponent doping improved thermoelectric performance of Cu3SbSe4-based solid solutions. Acta Physica Sinica, 2021, 70(10): 107303. doi: 10.7498/aps.70.20202094
    [8] Wei Jiang-Tao, Yang Liang-Liang, Wei Lei, Qin Yuan-Hao, Song Pei-Shuai, Zhang Ming-Liang, Yang Fu-Hua, Wang Xiao-Dong. Fabrication and thermoelectric properties of Si micro/nanobelts. Acta Physica Sinica, 2021, 70(18): 187304. doi: 10.7498/aps.70.20210801
    [9] Wei Jiang-Tao, Yang Liang-Liang, Qin Yuan-Hao, Song Pei-Shuai, Zhang Ming-Liang, Yang Fu-Hua, Wang Xiao-Dong. Methodology of teasting thermoelectric properties of low-dimensional nanomaterials. Acta Physica Sinica, 2021, 70(4): 047301. doi: 10.7498/aps.70.20201175
    [10] Tang Dao-Sheng, Hua Yu-Chao, Zhou Yan-Guang, Cao Bing-Yang. Thermal conductivity modeling of GaN films. Acta Physica Sinica, 2021, 70(4): 045101. doi: 10.7498/aps.70.20201611
    [11] Chen Yun-Fei, Wei Feng, Wang He, Zhao Wei-Yun, Deng Yuan. Structural control for high performance Bi2Te3–xSex thermoelectric thin films. Acta Physica Sinica, 2021, 70(20): 207303. doi: 10.7498/aps.70.20211090
    [12] Yang Liang-Liang, Qin Yuan-Hao, Wei Jiang-Tao, Song Pei-Shuai, Zhang Ming-Liang, Yang Fu-Hua, Wang Xiao-Dong. Research progress of Cu2Se thin film thermoelectric properties. Acta Physica Sinica, 2021, 70(7): 076802. doi: 10.7498/aps.70.20201677
    [13] Liu Ying-Guang, Zhang Shi-Bing, Han Zhong-He, Zhao Yu-Jin. Influence of grain size on the thermal conduction of nanocrystalline copper. Acta Physica Sinica, 2016, 65(10): 104401. doi: 10.7498/aps.65.104401
    [14] Gan Yu-Lin, Wang Li, Su Xue-Qiong, Xu Si-Wei, Kong Le, Shen Xiang. Thermal conductivity measurement on GeSbSe glasses:Raman scattering spectra method. Acta Physica Sinica, 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [15] Li Jing, Feng Yan-Hui, Zhang Xin-Xin, Huang Cong-Liang, Yang Mu. Thermal conductivities of metallic nanowires with considering surface and grain boundary scattering. Acta Physica Sinica, 2013, 62(18): 186501. doi: 10.7498/aps.62.186501
    [16] Wu Zi-Hua, Xie Hua-Qing, Zeng Qing-Feng. Preparation and thermoelectric properties of Ag-ZnO nanocomposites synthesized by means of sol-gel. Acta Physica Sinica, 2013, 62(9): 097301. doi: 10.7498/aps.62.097301
    [17] Huang Cong-Liang, Feng Yan-Hui, Zhang Xin-Xin, Li Jing, Wang Ge, Chou Ai-Hui. Thermal conductivity of metallic nanoparticle. Acta Physica Sinica, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [18] Tang Xin-Feng, Du Bao-Li, Xu Jing-Jing, Yan Yong-Gao. Synthesis and thermoelectric properties of nonstoichiometric AgSbTe2+ x compounds. Acta Physica Sinica, 2011, 60(1): 018403. doi: 10.7498/aps.60.018403
    [19] Hou Quan-Wen, Cao Bing-Yang, Guo Zeng-Yuan. Thermal conductivity of carbon nanotube: From ballistic to diffusive transport. Acta Physica Sinica, 2009, 58(11): 7809-7814. doi: 10.7498/aps.58.7809
    [20] Li Shi-Bin, Wu Zhi-Ming, Yuan Kai, Liao Nai-Man, Li Wei, Jiang Ya-Dong. Study on thermal conductivity of hydrogenated amorphous silicon films. Acta Physica Sinica, 2008, 57(5): 3126-3131. doi: 10.7498/aps.57.3126
Metrics
  • Abstract views:  5622
  • PDF Downloads:  238
  • Cited By: 0
Publishing process
  • Received Date:  17 May 2015
  • Accepted Date:  17 July 2015
  • Published Online:  05 November 2015

/

返回文章
返回
Baidu
map