搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ca2+掺杂对CdO多晶热电性能的影响

刘冉 高琳洁 李龙江 翟胜军 王江龙 傅广生 王淑芳

引用本文:
Citation:

Ca2+掺杂对CdO多晶热电性能的影响

刘冉, 高琳洁, 李龙江, 翟胜军, 王江龙, 傅广生, 王淑芳

High temperature thermoelectric performance of Ca2+ doped CdO ceramics

Liu Ran, Gao Lin-Jie, Li Long-Jiang, Zhai Sheng-Jun, Wang Jiang-Long, Fu Guang-Sheng, Wang Shu-Fang
PDF
导出引用
  • 以CaCO3作为Ca2+源, 利用传统固相烧结法制备了Cd1-xCaxO (x=0, 0.01, 0.03, 0.05) 多晶块体样品并研究了Ca2+掺杂对CdO高温热电性能的影响. CaCO3的掺入会导致CdO多晶载流子浓度降低, 使Cd1-xCaxO的电阻率ρ和塞贝克系数的绝对值|S|增大、电子热导率κe减小. 同时, 在CdO中掺入CaCO3会引入点缺陷和气孔并可抑制CdO晶粒长大、晶界增多, 从而增加了对声子的散射, 使样品的声子热导率κp减小. 由于总热导率的大幅降低, Cd0.99Ca0.01O多晶样品在1000 K时的热电优值ZT可达0.42, 比本征CdO提高了约27%, 为迄今n型氧化物热电材料报道的最好结果之一.
    Oxide thermoelectric materials have been considered to be potential candidates in high-temperature thermoelectric power generation, however, their high thermal conductivity renders them inferior to the conventional thermoelectric materials and limit their practical application. In this paper, we successfully reduce the thermal conductivity of CdO polycrystals through Ca2+ doping, and the improvement in ZT is also obtained due to the low thermal conductivity. Cd1-xCaxO (x=0, 0.01, 0.03, 0.08) polycrystals are synthesized by adding CaCO3 into CdO via conventional solid-state reaction method and their high-temperature thermoelectric properties are studied. XRD results reveal that all samples are composed of CdO polycrystals, and the lattice parameters increase with Ca2+ content due to the larger radius of Ca2+ as compared with that of Cd2+. Addition of CaCO3 can induce the formation of point defects as well as pores in the CdO polycrystals, thus inhibits the grain growth of CdO and induces the increase of grain boundaries. The main electron carriers in CdO are reported to be shallow level donor impurities formed by oxygen vacancies; as the Ca2+ concentration in Cd1-xCaxO increases, the conduction band minimum of the samples shifts upward and the level of donor impurity becomes deeper, finally resulting in the decrease of electron carrier concentration. Meanwhile, the reduced carrier concentration in the doped samples leads to the increase of both the electrical resistivity ρ and the absolute Seebeck coefficient |S|, while the electrical thermal conductivity κ e will decrease with increasing Ca content. Investigations on the thermal properties of the obtained samples demonstrate that the introduction of Ca2+ is effective to suppress the thermal conductivity. The increment of pores and grain boundaries in the doped samples will enhance the long-wavelength phonon scattering, resulting in the decrease of phonon thermal conductivity κ p. Furthermore, the point defects, which come from the mass and size differences between Ca and Cd atoms, also act as scattering centers and lead to a considerable decrease in phonon thermal conductivity. Due to the simultaneous reduction of both electrical and phonon thermal conductivity, the total thermal conductivity κ may substantially be suppressed, for example, the total thermal conductivity of Cd0.95Ca0.05O reaches 2.2 W·m-1·K-1 at 1000 K, a remarkable decrease as compared with pristine CdO, which is 3.6 W·m-1·K-1 measured at the same temperature. Benefiting from the drastically reduced thermal conductivity, Cd0.99Ca0.01O polycrystals can achieve a high ZT of 0.42 at 1000 K, 27% higher than the pure CdO, which is one of the best n-type oxide TE materials reported so far.
      Corresponding author: Gao Lin-Jie, LinjieGao@hotmail.com;sfwang@hbu.edu.cn ; Wang Shu-Fang, LinjieGao@hotmail.com;sfwang@hbu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51372064), and the Fund for Distinguished Young Scholars of Hebei Province, China (Grant No. 2013201249).
    [1]

    Zhang X, Ma X Y, Zhang F P, Wu P X, Lu Q M, Liu Y Q, Zhang J X 2012 Acta Phys. Sin. 61 047201 (in Chinese) [张忻, 马旭颐, 张飞鹏, 武鹏旭, 路清梅, 刘燕琴, 张久兴 2012 61 047201]

    [2]

    Heremans P J, Jovovic V, Toberer S E, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder J G 2008 Science 321 554

    [3]

    He Y, Day T, Zhang T S, Liu H L, Shi X, Chen L D, Snyder J G 2014 Adv. Mater. 26 3974

    [4]

    Zhang H, Luo J, Zhu H T, Liu Q L, Liang J K, Rao G H 2012 Acta Phys. Sin. 61 086101 (in Chinese) [张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉 2012 61 086101]

    [5]

    Ohta H, Kim S, Komune Y, Mizoguchi T, Nomura K, Ohta S, Momura T, Ikuhara Y, Hirano M, Hosono H, Koumoto K 2007 Nat. Mater. 6 129

    [6]

    Lan J L, Liu Y C, Zhan B, Lin Y H, Zhang B P, Yuan X, Zhang W Q, Xu W, Nan C W 2013 Adv. Mater. 25 5086

    [7]

    Zhu X B, Shi D Q, Dou S X, Sun Y P, Li Q, Wang L, Li W X, Yeoh W K, Zheng R K, Chen Z X, Kong C X 2010 Acta Mater. 58 4281

    [8]

    Wang H C, Wang C L, Su W B, Liu J, Sun Y, Peng H, Zhang J L, Zhao M L, Li J C, Yin N, Mei L M 2011 Acta Phys. Sin. 60 087203 (in Chinese) [王洪超, 王春雷, 苏文斌, 刘剑, 孙毅, 彭华, 张家良, 赵明磊, 李吉超, 尹娜, 梅良模 2011 60 087203]

    [9]

    Wu Z H, Xie H Q, Zhai Y B, Gan L H, Liu J 2015 Chin. Phys. B 24 034402

    [10]

    Ohtaki M, Araki K, Yamamoto K 2009 J. Electron. Mater. 38 1234

    [11]

    B'erardan D, Guilmeau E, Maignan A, Raveau B 2008 Solid State Commun. 146 97

    [12]

    Liu Y, Lin Y H, Lan J L, Xu W, Zhang B P, Nan C W, Zhu H M 2010 J. Am. Ceram. Soc. 93 2938

    [13]

    Lubeck C R, Han T Y-J, Gash A E, Satcher J H, Jr, Doyle F M 2006 Adv. Mater. 18 781

    [14]

    Yu H J, Jeong M, Lim Y S, Seo W-S, Kwon O-J, Park C-H, Hwang H-J 2014 RSC Adv. 4 43811

    [15]

    Wang S F, Liu F Q, L Q, Dai S Y, Wang J L, Yu W, Fu G S 2013 J. Eur. Ceram. Soc. 33 1763

    [16]

    Wang S F, L Q, Li L J, Fu G S, Liu F Q, Dai S Y, Yu W, Wang J L 2013 Scripta Mater. 69 533

    [17]

    Li L J, Liang S, Li S M, Wang J L, Wang S F, Dong G Y, Fu G S 2014 Nanotechnology 25 425402

    [18]

    Ohta S, Nomura T 2005 Appl. Phys. Lett. 87 092108

    [19]

    Bocher L, Aguirre M H, Logvinovich D, Shkabko A, Robert R, Trottmann M, Weidenkaff A 2008 Inorg. Chem. 47 8077

    [20]

    Lan J-L, Liu Y, Lin Y-H, Nan C-W, Cai Q, Yang X 2015 Sci. Rep. 5 7783

    [21]

    Lin C-J, Wei W-C J 2008 Mater. Chem. Phys. 111 82

    [22]

    Park K, Seong J K, Kim G H 2009 J. Alloys Compd. 473 423

    [23]

    Liu H, Fang L, Wu F, Tian D X, Li W J, Lu Y, Kong C Y, Hang S F 2014 Surf. Rev. Lett. 21 1450033

    [24]

    Burbano M, Scanlon D O, Watson G W 2011 J. Am. Chem. Soc. 133 15065

    [25]

    Pelatt B D, Ravichandran R, Wager J F, Keszler D A 2011 J. Am. Chem. Soc. 133 16852

    [26]

    Francis C A, Detert D M, Chen G, Dubon O D, Yu K M, Walukiewicz W 2015 Appl. Phys. Lett. 106 022110

    [27]

    Guibin C, Yu K M, Reichertz L A, Walukiewicz W 2013 Appl. Phys. Lett. 103 041902

    [28]

    Mun H, Choi S-M, Lee K H, Kim S W ChemSusChem. Published online: 17 MAR 2015, DOI: 10. 1002/cssc. 201403485

    [29]

    Zhou X, Wang G, Zhang L, Chi H, Su X, Sakamotob J, Uher C 2012 J. Mater. Chem. 22 2958

    [30]

    He Q Y, Hu S J, Tang X G, Lan Y C, Yang J, Wang X W, Ren Z F, Hao Q, Che G 2008 Appl. Phys. Lett. 93 042108

    [31]

    Wan C L, Pan W, Xu Q, Qin Y X, Wang J D, Qu Z X, Fang M H 2006 Phys. Rev. B 74 144109

  • [1]

    Zhang X, Ma X Y, Zhang F P, Wu P X, Lu Q M, Liu Y Q, Zhang J X 2012 Acta Phys. Sin. 61 047201 (in Chinese) [张忻, 马旭颐, 张飞鹏, 武鹏旭, 路清梅, 刘燕琴, 张久兴 2012 61 047201]

    [2]

    Heremans P J, Jovovic V, Toberer S E, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder J G 2008 Science 321 554

    [3]

    He Y, Day T, Zhang T S, Liu H L, Shi X, Chen L D, Snyder J G 2014 Adv. Mater. 26 3974

    [4]

    Zhang H, Luo J, Zhu H T, Liu Q L, Liang J K, Rao G H 2012 Acta Phys. Sin. 61 086101 (in Chinese) [张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉 2012 61 086101]

    [5]

    Ohta H, Kim S, Komune Y, Mizoguchi T, Nomura K, Ohta S, Momura T, Ikuhara Y, Hirano M, Hosono H, Koumoto K 2007 Nat. Mater. 6 129

    [6]

    Lan J L, Liu Y C, Zhan B, Lin Y H, Zhang B P, Yuan X, Zhang W Q, Xu W, Nan C W 2013 Adv. Mater. 25 5086

    [7]

    Zhu X B, Shi D Q, Dou S X, Sun Y P, Li Q, Wang L, Li W X, Yeoh W K, Zheng R K, Chen Z X, Kong C X 2010 Acta Mater. 58 4281

    [8]

    Wang H C, Wang C L, Su W B, Liu J, Sun Y, Peng H, Zhang J L, Zhao M L, Li J C, Yin N, Mei L M 2011 Acta Phys. Sin. 60 087203 (in Chinese) [王洪超, 王春雷, 苏文斌, 刘剑, 孙毅, 彭华, 张家良, 赵明磊, 李吉超, 尹娜, 梅良模 2011 60 087203]

    [9]

    Wu Z H, Xie H Q, Zhai Y B, Gan L H, Liu J 2015 Chin. Phys. B 24 034402

    [10]

    Ohtaki M, Araki K, Yamamoto K 2009 J. Electron. Mater. 38 1234

    [11]

    B'erardan D, Guilmeau E, Maignan A, Raveau B 2008 Solid State Commun. 146 97

    [12]

    Liu Y, Lin Y H, Lan J L, Xu W, Zhang B P, Nan C W, Zhu H M 2010 J. Am. Ceram. Soc. 93 2938

    [13]

    Lubeck C R, Han T Y-J, Gash A E, Satcher J H, Jr, Doyle F M 2006 Adv. Mater. 18 781

    [14]

    Yu H J, Jeong M, Lim Y S, Seo W-S, Kwon O-J, Park C-H, Hwang H-J 2014 RSC Adv. 4 43811

    [15]

    Wang S F, Liu F Q, L Q, Dai S Y, Wang J L, Yu W, Fu G S 2013 J. Eur. Ceram. Soc. 33 1763

    [16]

    Wang S F, L Q, Li L J, Fu G S, Liu F Q, Dai S Y, Yu W, Wang J L 2013 Scripta Mater. 69 533

    [17]

    Li L J, Liang S, Li S M, Wang J L, Wang S F, Dong G Y, Fu G S 2014 Nanotechnology 25 425402

    [18]

    Ohta S, Nomura T 2005 Appl. Phys. Lett. 87 092108

    [19]

    Bocher L, Aguirre M H, Logvinovich D, Shkabko A, Robert R, Trottmann M, Weidenkaff A 2008 Inorg. Chem. 47 8077

    [20]

    Lan J-L, Liu Y, Lin Y-H, Nan C-W, Cai Q, Yang X 2015 Sci. Rep. 5 7783

    [21]

    Lin C-J, Wei W-C J 2008 Mater. Chem. Phys. 111 82

    [22]

    Park K, Seong J K, Kim G H 2009 J. Alloys Compd. 473 423

    [23]

    Liu H, Fang L, Wu F, Tian D X, Li W J, Lu Y, Kong C Y, Hang S F 2014 Surf. Rev. Lett. 21 1450033

    [24]

    Burbano M, Scanlon D O, Watson G W 2011 J. Am. Chem. Soc. 133 15065

    [25]

    Pelatt B D, Ravichandran R, Wager J F, Keszler D A 2011 J. Am. Chem. Soc. 133 16852

    [26]

    Francis C A, Detert D M, Chen G, Dubon O D, Yu K M, Walukiewicz W 2015 Appl. Phys. Lett. 106 022110

    [27]

    Guibin C, Yu K M, Reichertz L A, Walukiewicz W 2013 Appl. Phys. Lett. 103 041902

    [28]

    Mun H, Choi S-M, Lee K H, Kim S W ChemSusChem. Published online: 17 MAR 2015, DOI: 10. 1002/cssc. 201403485

    [29]

    Zhou X, Wang G, Zhang L, Chi H, Su X, Sakamotob J, Uher C 2012 J. Mater. Chem. 22 2958

    [30]

    He Q Y, Hu S J, Tang X G, Lan Y C, Yang J, Wang X W, Ren Z F, Hao Q, Che G 2008 Appl. Phys. Lett. 93 042108

    [31]

    Wan C L, Pan W, Xu Q, Qin Y X, Wang J D, Qu Z X, Fang M H 2006 Phys. Rev. B 74 144109

  • [1] 马云鹏, 庄华鹭, 李敬锋, 李千. 应变增强Nb掺杂SrTiO3薄膜热电性能.  , 2023, 72(9): 096803. doi: 10.7498/aps.72.20222301
    [2] 郑建军, 张丽萍. 单层Cu2X的热电性质.  , 2023, 72(8): 086301. doi: 10.7498/aps.72.20222015
    [3] 郑建军, 张丽萍. 单层Cu2X(X=S,Se):具有低晶格热导率的优秀热电材料.  , 2023, 0(0): 0-0. doi: 10.7498/aps.72.20220015
    [4] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析.  , 2022, 71(5): 056101. doi: 10.7498/aps.71.20211857
    [5] 李梦荣, 应鹏展, 李勰, 崔教林. 采用熵工程技术改善SnTe基材料的热电性能.  , 2022, 71(23): 237302. doi: 10.7498/aps.71.20221247
    [6] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析.  , 2021, (): . doi: 10.7498/aps.70.20211857
    [7] 王莫凡, 应鹏展, 李勰, 崔教林. 多组元掺杂提升Cu3SbSe4基固溶体的热电性能.  , 2021, 70(10): 107303. doi: 10.7498/aps.70.20202094
    [8] 魏江涛, 杨亮亮, 魏磊, 秦源浩, 宋培帅, 张明亮, 杨富华, 王晓东. Si微/纳米带的制备与热电性能.  , 2021, 70(18): 187304. doi: 10.7498/aps.70.20210801
    [9] 魏江涛, 杨亮亮, 秦源浩, 宋培帅, 张明亮, 杨富华, 王晓东. 低维纳米材料热电性能测试方法研究.  , 2021, 70(4): 047301. doi: 10.7498/aps.70.20201175
    [10] 唐道胜, 华钰超, 周艳光, 曹炳阳. GaN薄膜的热导率模型研究.  , 2021, 70(4): 045101. doi: 10.7498/aps.70.20201611
    [11] 陈赟斐, 魏锋, 王赫, 赵未昀, 邓元. 高性能Bi2Te3–xSex热电薄膜的可控生长.  , 2021, 70(20): 207303. doi: 10.7498/aps.70.20211090
    [12] 杨亮亮, 秦源浩, 魏江涛, 宋培帅, 张明亮, 杨富华, 王晓东. 硒化亚铜薄膜热电性能研究进展.  , 2021, 70(7): 076802. doi: 10.7498/aps.70.20201677
    [13] 刘英光, 张士兵, 韩中合, 赵豫晋. 纳晶铜晶粒尺寸对热导率的影响.  , 2016, 65(10): 104401. doi: 10.7498/aps.65.104401
    [14] 甘渝林, 王丽, 苏雪琼, 许思维, 孔乐, 沈祥. 用拉曼光谱测量GeSbSe玻璃的热导率.  , 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [15] 李静, 冯妍卉, 张欣欣, 黄丛亮, 杨穆. 考虑界面散射的金属纳米线热导率修正.  , 2013, 62(18): 186501. doi: 10.7498/aps.62.186501
    [16] 吴子华, 谢华清, 曾庆峰. Ag-ZnO纳米复合热电材料的制备及其性能研究.  , 2013, 62(9): 097301. doi: 10.7498/aps.62.097301
    [17] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率.  , 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [18] 杜保立, 徐静静, 鄢永高, 唐新峰. 非化学计量比AgSbTe2+x化合物制备及热电性能.  , 2011, 60(1): 018403. doi: 10.7498/aps.60.018403
    [19] 侯泉文, 曹炳阳, 过增元. 碳纳米管的热导率:从弹道到扩散输运.  , 2009, 58(11): 7809-7814. doi: 10.7498/aps.58.7809
    [20] 李世彬, 吴志明, 袁 凯, 廖乃镘, 李 伟, 蒋亚东. 氢化非晶硅薄膜的热导率研究.  , 2008, 57(5): 3126-3131. doi: 10.7498/aps.57.3126
计量
  • 文章访问数:  5638
  • PDF下载量:  238
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-17
  • 修回日期:  2015-07-17
  • 刊出日期:  2015-11-05

/

返回文章
返回
Baidu
map