搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应变增强Nb掺杂SrTiO3薄膜热电性能

马云鹏 庄华鹭 李敬锋 李千

引用本文:
Citation:

应变增强Nb掺杂SrTiO3薄膜热电性能

马云鹏, 庄华鹭, 李敬锋, 李千

Strain-enhanced thermoelectric properties of Nb-doped SrTiO3 thin films

Ma Yun-Peng, Zhuang Hua-Lu, Li Jing-Feng, Li Qian
PDF
HTML
导出引用
  • 高性能热电材料的发展有望帮助解决未来能源危机, 且随着可穿戴器件的发展与应用, 热电材料和器件除了要具备更高的热-电转化性能以外, 还必须具有良好的柔性. 将热电材料制成薄膜既可以为微型器件供电, 也有潜力应用于柔性器件. 本文使用脉冲激光沉积方法, 在商用SrTiO3 (STO)和La0.3Sr0.7Al0.65Ta0.35O3 (LSAT)衬底上制备得到了不同厚度的高质量铌掺杂钛酸锶薄膜(Nb:STO), 并对薄膜的表面形貌、结构以及热电性能进行表征与测试. 结果显示, 使用LSAT作为衬底可以对薄膜施加面内压应变, 随着薄膜厚度的增大, 应变逐渐释放并接近于块体Nb:STO. 随着厚度的增大, 薄膜的热电性能逐渐提升, 在STO衬底上生长的208 nm厚样品的室温功率因子相比于52 nm样品提升了187%. 此外, 144 nm厚度的Nb:STO/LSAT薄膜室温塞贝克系数达到了265.95 μV/K, 这是由于衬底应变导致薄膜样品的能带变化. 本工作表明通过应变工程调控铌掺杂钛酸锶薄膜热电性能的可行性, 为后续提高此类薄膜材料的热电性能提供了一种新思路.
    The development of high-performance thermoelectric materials can help solve the energy crisis in the future. Thin-film thermoelectric materials can meet the requirement for flexibility of wearable devices while supplying electrical power to them. In this study, high-quality Nb-doped SrTiO3 films (Nb:STO) with different thickness are prepared on SrTiO3 (STO) and La0.3Sr0.7Al0.65Ta0.35O3 (LSAT) substrates by pulsed laser deposition. The surface morphologies, crystal structures, and thermoelectric performances of the films are characterized. The results show that the thermoelectric performance of the strain-free film increase with thickness increasing. The power factor at room temperature increases by 187%. The Seebeck coefficient of the 144 nm-thick Nb:STO/LSAT sample with strain is greatly improved to $265.95\;{\text{μ}}{\rm{V}}/{\rm{K}}$ at room temperature, which is likely to be due to the strain induced changes in the energy band of the thin film. The improvement of the thermoelectric performances of Nb:STO thin films by strain engineering provides a new approach to improving the thermoelectric properties of oxide thin films.
      通信作者: 李千, qianli_mse@tsinghua.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2020YFA0309100)和国家自然科学基金委原创探索计划(批准号: 52150092)资助的课题.
      Corresponding author: Li Qian, qianli_mse@tsinghua.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFA0309100) and the National Natural Science Foundation of China(Grant No. 52150092).
    [1]

    Utlu Z, Hepbasli A 2007 Renew. Sustain. Energy Rev. 11 1Google Scholar

    [2]

    Zhang B, Wang J, Zou T, Zhang S, Yaer X, Ding N, Liu C, Miao L, Li Y, Wu Y 2015 J. Mater. Chem. C 3 11406Google Scholar

    [3]

    Gao W, Zhu Y, Wang Y, Yuan G, Liu J M 2020 J. Materiomics 6 1Google Scholar

    [4]

    Chiang C K, Fincher C R, Park Y W, Heeger A J, Shirakawa H, Louis E J, Gau S C, MacDiarmid A G 1977 Phys. Rev. Lett. 39 1098Google Scholar

    [5]

    Fan Z, Du D, Yu Z, Li P, Xia Y, Ouyang J 2016 ACS Appl. Mater. Interfaces 8 23204Google Scholar

    [6]

    Jalan B, Stemmer S 2010 Appl. Phys. Lett. 97 042106Google Scholar

    [7]

    Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y, Hirano M, Hosono H, Koumoto K 2007 Nat. Mater. 6 129Google Scholar

    [8]

    Pu J, Kanahashi K, Cuong N T, Chen C H, Li L J, Okada S, Ohta H, Takenobu T 2016 Phys. Rev. B 94 014312Google Scholar

    [9]

    Li P, Li L, Zeng X C 2016 J. Mater. Chem. C 4 3106Google Scholar

    [10]

    Zhang X, Liu B, Liu S, Li J, Liu R, Wang P, Dong Q, Li S, Tian H, Li Q, Liu B 2021 J. Alloys Compd. 867 158923Google Scholar

    [11]

    Wang N, Li M, Xiao H, Gong H, Liu Z, Zu X, Qiao L 2019 Phys. Chem. Chem. Phys. 21 15097Google Scholar

    [12]

    Xu R, Huang J, Barnard E S, Hong S S, Singh P, Wong E K, Jansen T, Harbola V, Xiao J, Wang B Y, Crossley S, Lu D, Liu S, Hwang H Y 2020 Nat. Commun. 11 3141Google Scholar

    [13]

    Dong Z, Chen H, Qi M, Shen J, Liu W, Guo E, Li D, Zhang Y, Wu Z 2022 Laser Photonics Rev. 16 2100454Google Scholar

    [14]

    Tikhomirov O, Jiang H, Levy J 2002 Phys. Rev. Lett. 89 147601Google Scholar

    [15]

    Haeni J H, Irvin P, Chang W, Uecker R, Reiche P, Li Y L, Choudhury S, Tian W, Hawley M E, Craigo B, Tagantsev A K, Pan X Q, Streiffer S K, Chen L Q, Kirchoefer S W, Levy J, Schlom D G 2004 Nature 430 758Google Scholar

    [16]

    Bhansali S, Khunsin W, Chatterjee A, Santiso J, Abad B, Martin-Gonzalez M, Jakob G, Sotomayor Torres C M, Chávez-Angel E 2019 Nanoscale Adv. 1 3647Google Scholar

    [17]

    Janotti A, Steiauf D, Van de Walle C G 2011 Phys. Rev. B 84 201304Google Scholar

    [18]

    Bellucci A, Mastellone M, Girolami M, Orlando S, Medici L, Mezzi A, Kaciulis S, Polini R, Trucchi D M 2017 Appl. Surf. Sci. 418 589Google Scholar

    [19]

    Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B 2001 Nature 413 597Google Scholar

    [20]

    Chen Z J, Zhou B Y, Li J X, Wen C L 2016 Appl. Surf. Sci. 386 389Google Scholar

    [21]

    Varghese T, Hollar C, Richardson J, Kempf N, Han C, Gamarachchi P, Estrada D, Mehta R J, Zhang Y 2016 Sci. Rep. 6 33135Google Scholar

    [22]

    Wunderlich W, Ohta H, Koumoto K 2009 Phys. B Condens. Matter 404 2202Google Scholar

    [23]

    Benthem K, Elsässer C, French R H 2001 J. Appl. Phys. 90 6156Google Scholar

    [24]

    Apreutesei M, Debord R, Bouras M, Regreny P, Botella C, Benamrouche A, Carretero-Genevrier A, Gazquez J, Grenet G, Pailhès S, Saint-Girons G, Bachelet R 2017 Sci. Technol. Adv. Mater. 18 430Google Scholar

    [25]

    Zhao T, Lu H B, Chen F, Dai S Y, Yang G Z, Chen Z H 2000 J. Cryst. Growth 212 451Google Scholar

    [26]

    Kumar S R S, Barasheed A Z, Alshareef H N 2013 ACS Appl. Mater. Interfaces 5 7268Google Scholar

    [27]

    Blennow P, Hagen A, Hansen K, Wallenberg L, Mogensen M 2008 Solid State Ion. 179 2047Google Scholar

    [28]

    Chan N H, Sharma R K, Smyth D M 1981 J. Electrochem. Soc. 128 1762Google Scholar

    [29]

    Culbertson C M, Flak A T, Yatskin M, Cheong P H Y, Cann D P, Dolgos M R 2020 Sci. Rep. 10 3729Google Scholar

    [30]

    Chatterjee A, Lan Z, Christensen D V, Bauitti F, Morata A, Chavez-Angel E, Sanna S, Castelli I E, Chen Y, Tarancon A, Pryds N 2022 Phys. Chem. Chem. Phys. 24 3741Google Scholar

    [31]

    Ohtomo A, Hwang H Y 2004 Appl. Phys. Lett. 84 1716Google Scholar

    [32]

    Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 12727Google Scholar

    [33]

    许静, 何梓民, 杨文龙, 吴荣, 赖晓芳, 简基康 2022 71 197301Google Scholar

    Xu J, He Z M, Yang W L, Wu R, Lai X F, Jian J K 2022 Acta Phys. Sin. 71 197301Google Scholar

    [34]

    Matthews J, Blakeslee A 1974 J. Cryst. Growth 27 118Google Scholar

    [35]

    Wang T, Ganguly K, Marshall P, Xu P, Jalan B 2013 Appl. Phys. Lett. 103 212904Google Scholar

    [36]

    Zou D, Liu Y, Xie S, Lin J, Li J 2013 Chem. Phys. Lett. 586 159Google Scholar

  • 图 1  不同厚度Nb:STO/STO薄膜生长状况表征 (a) XRD谱; (b) AFM形貌图; (c) EDS, 插表为原子摩尔比

    Fig. 1.  Characterization of Nb doped SrTiO3 thin films on (001) SrTiO3 substrates with different thicknesses: (a) XRD spectrum; (b) AFM image; (c) EDS, the inset is the measured element composition.

    图 2  不同厚度 Nb:STO/STO 薄膜在不同温度下的面内热电性能 (a)电导率; (b)载流子浓度; (c)塞贝克系数; (d)功率因子

    Fig. 2.  Temperature dependence of in-plane thermoelectric properties of Nb:STO/STO thin films with different thicknesses: (a) Conductivities; (b) carrier concentrations; (c) Seebeck coefficients; (d) power factors.

    图 3  NSTO/LSAT 薄膜生长状况表征 (a) AFM形貌图; (b) XRD谱; (c) 薄膜 c 轴晶格常数

    Fig. 3.  Characterization of Nb:STO/LSAT thin films: (a) AFM image; (b) XRD spectrum; (c) lattice parameters of the c axis.

    图 4  不同厚度Nb:STO/STO和Nb:STO/LSAT 薄膜在不同温度下的面内热电性能 (a) 电导率; (b) 塞贝克系数; (c) 功率因子; (d) 不同衬底、厚度薄膜的电导率对比

    Fig. 4.  Temperature dependence of in-plane thermoelectric properties of Nb:STO/STO and Nb:STO/LSAT thin films with different thicknesses: (a) Conductivities; (b) Seebeck coefficients; (c) power factors; (d) conductivity of thin films with different thicknesses and substrates.

    Baidu
  • [1]

    Utlu Z, Hepbasli A 2007 Renew. Sustain. Energy Rev. 11 1Google Scholar

    [2]

    Zhang B, Wang J, Zou T, Zhang S, Yaer X, Ding N, Liu C, Miao L, Li Y, Wu Y 2015 J. Mater. Chem. C 3 11406Google Scholar

    [3]

    Gao W, Zhu Y, Wang Y, Yuan G, Liu J M 2020 J. Materiomics 6 1Google Scholar

    [4]

    Chiang C K, Fincher C R, Park Y W, Heeger A J, Shirakawa H, Louis E J, Gau S C, MacDiarmid A G 1977 Phys. Rev. Lett. 39 1098Google Scholar

    [5]

    Fan Z, Du D, Yu Z, Li P, Xia Y, Ouyang J 2016 ACS Appl. Mater. Interfaces 8 23204Google Scholar

    [6]

    Jalan B, Stemmer S 2010 Appl. Phys. Lett. 97 042106Google Scholar

    [7]

    Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y, Hirano M, Hosono H, Koumoto K 2007 Nat. Mater. 6 129Google Scholar

    [8]

    Pu J, Kanahashi K, Cuong N T, Chen C H, Li L J, Okada S, Ohta H, Takenobu T 2016 Phys. Rev. B 94 014312Google Scholar

    [9]

    Li P, Li L, Zeng X C 2016 J. Mater. Chem. C 4 3106Google Scholar

    [10]

    Zhang X, Liu B, Liu S, Li J, Liu R, Wang P, Dong Q, Li S, Tian H, Li Q, Liu B 2021 J. Alloys Compd. 867 158923Google Scholar

    [11]

    Wang N, Li M, Xiao H, Gong H, Liu Z, Zu X, Qiao L 2019 Phys. Chem. Chem. Phys. 21 15097Google Scholar

    [12]

    Xu R, Huang J, Barnard E S, Hong S S, Singh P, Wong E K, Jansen T, Harbola V, Xiao J, Wang B Y, Crossley S, Lu D, Liu S, Hwang H Y 2020 Nat. Commun. 11 3141Google Scholar

    [13]

    Dong Z, Chen H, Qi M, Shen J, Liu W, Guo E, Li D, Zhang Y, Wu Z 2022 Laser Photonics Rev. 16 2100454Google Scholar

    [14]

    Tikhomirov O, Jiang H, Levy J 2002 Phys. Rev. Lett. 89 147601Google Scholar

    [15]

    Haeni J H, Irvin P, Chang W, Uecker R, Reiche P, Li Y L, Choudhury S, Tian W, Hawley M E, Craigo B, Tagantsev A K, Pan X Q, Streiffer S K, Chen L Q, Kirchoefer S W, Levy J, Schlom D G 2004 Nature 430 758Google Scholar

    [16]

    Bhansali S, Khunsin W, Chatterjee A, Santiso J, Abad B, Martin-Gonzalez M, Jakob G, Sotomayor Torres C M, Chávez-Angel E 2019 Nanoscale Adv. 1 3647Google Scholar

    [17]

    Janotti A, Steiauf D, Van de Walle C G 2011 Phys. Rev. B 84 201304Google Scholar

    [18]

    Bellucci A, Mastellone M, Girolami M, Orlando S, Medici L, Mezzi A, Kaciulis S, Polini R, Trucchi D M 2017 Appl. Surf. Sci. 418 589Google Scholar

    [19]

    Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B 2001 Nature 413 597Google Scholar

    [20]

    Chen Z J, Zhou B Y, Li J X, Wen C L 2016 Appl. Surf. Sci. 386 389Google Scholar

    [21]

    Varghese T, Hollar C, Richardson J, Kempf N, Han C, Gamarachchi P, Estrada D, Mehta R J, Zhang Y 2016 Sci. Rep. 6 33135Google Scholar

    [22]

    Wunderlich W, Ohta H, Koumoto K 2009 Phys. B Condens. Matter 404 2202Google Scholar

    [23]

    Benthem K, Elsässer C, French R H 2001 J. Appl. Phys. 90 6156Google Scholar

    [24]

    Apreutesei M, Debord R, Bouras M, Regreny P, Botella C, Benamrouche A, Carretero-Genevrier A, Gazquez J, Grenet G, Pailhès S, Saint-Girons G, Bachelet R 2017 Sci. Technol. Adv. Mater. 18 430Google Scholar

    [25]

    Zhao T, Lu H B, Chen F, Dai S Y, Yang G Z, Chen Z H 2000 J. Cryst. Growth 212 451Google Scholar

    [26]

    Kumar S R S, Barasheed A Z, Alshareef H N 2013 ACS Appl. Mater. Interfaces 5 7268Google Scholar

    [27]

    Blennow P, Hagen A, Hansen K, Wallenberg L, Mogensen M 2008 Solid State Ion. 179 2047Google Scholar

    [28]

    Chan N H, Sharma R K, Smyth D M 1981 J. Electrochem. Soc. 128 1762Google Scholar

    [29]

    Culbertson C M, Flak A T, Yatskin M, Cheong P H Y, Cann D P, Dolgos M R 2020 Sci. Rep. 10 3729Google Scholar

    [30]

    Chatterjee A, Lan Z, Christensen D V, Bauitti F, Morata A, Chavez-Angel E, Sanna S, Castelli I E, Chen Y, Tarancon A, Pryds N 2022 Phys. Chem. Chem. Phys. 24 3741Google Scholar

    [31]

    Ohtomo A, Hwang H Y 2004 Appl. Phys. Lett. 84 1716Google Scholar

    [32]

    Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 12727Google Scholar

    [33]

    许静, 何梓民, 杨文龙, 吴荣, 赖晓芳, 简基康 2022 71 197301Google Scholar

    Xu J, He Z M, Yang W L, Wu R, Lai X F, Jian J K 2022 Acta Phys. Sin. 71 197301Google Scholar

    [34]

    Matthews J, Blakeslee A 1974 J. Cryst. Growth 27 118Google Scholar

    [35]

    Wang T, Ganguly K, Marshall P, Xu P, Jalan B 2013 Appl. Phys. Lett. 103 212904Google Scholar

    [36]

    Zou D, Liu Y, Xie S, Lin J, Li J 2013 Chem. Phys. Lett. 586 159Google Scholar

  • [1] 郑建军, 张丽萍. 单层Cu2X的热电性质.  , 2023, 72(8): 086301. doi: 10.7498/aps.72.20222015
    [2] 陈赟斐, 魏锋, 王赫, 赵未昀, 邓元. 高性能Bi2Te3–xSex热电薄膜的可控生长.  , 2021, 70(20): 207303. doi: 10.7498/aps.70.20211090
    [3] 杨亮亮, 秦源浩, 魏江涛, 宋培帅, 张明亮, 杨富华, 王晓东. 硒化亚铜薄膜热电性能研究进展.  , 2021, 70(7): 076802. doi: 10.7498/aps.70.20201677
    [4] 王娇, 刘少辉, 周梦, 郝好山. 抗坏血酸后处理化学气相法制备的聚3, 4-乙撑二氧噻吩薄膜及其热电性能.  , 2020, 69(14): 147201. doi: 10.7498/aps.69.20200431
    [5] 王娇, 刘少辉, 周梦, 郝好山, 翟继卫. 钛酸锶纳米纤维表面羟基化处理对聚偏氟乙烯复合材料介电性能和储能性能的影响.  , 2020, 69(21): 218101. doi: 10.7498/aps.69.20200592
    [6] 刘冉, 高琳洁, 李龙江, 翟胜军, 王江龙, 傅广生, 王淑芳. Ca2+掺杂对CdO多晶热电性能的影响.  , 2015, 64(21): 218101. doi: 10.7498/aps.64.218101
    [7] 韦庞, 李康, 冯硝, 欧云波, 张立果, 王立莉, 何珂, 马旭村, 薛其坤. 在预刻蚀的衬底上通过分子束外延直接生长出拓扑绝缘体薄膜的微器件.  , 2014, 63(2): 027303. doi: 10.7498/aps.63.027303
    [8] 薛将, 潘风明, 裴煜. 钽掺杂二氧化钛薄膜的光电性能研究.  , 2013, 62(15): 158103. doi: 10.7498/aps.62.158103
    [9] 徐韵, 李云鹏, 金璐, 马向阳, 杨德仁. 脉冲激光沉积法制备的ZnO薄膜的低阈值电抽运紫外随机激射.  , 2013, 62(8): 084207. doi: 10.7498/aps.62.084207
    [10] 王伟, 唐佳伟, 王乐天, 陈小兵. 脉冲激光沉积法制备高温压电薄膜0.20 BiInO3-0.80PbTiO3(已撤稿).  , 2013, 62(23): 237701. doi: 10.7498/aps.62.237701
    [11] 王淑芳, 陈珊珊, 陈景春, 闫国英, 乔小齐, 刘富强, 王江龙, 丁学成, 傅广生. 脉冲激光沉积温度及氧压对Bi2Sr2Co2Oy热电薄膜晶体结构与电输运性能的影响.  , 2012, 61(6): 066804. doi: 10.7498/aps.61.066804
    [12] 李世帅, 冯秀鹏, 黄金昭, 刘春彦, 张仲, 陶冶微. Zn1-x-yNaxCoyO薄膜的脉冲激光沉积制备及表征.  , 2011, 60(5): 057105. doi: 10.7498/aps.60.057105
    [13] 刘 婷, 谈松林, 张 辉, 秦 毅, 张鹏翔. 氧压对SrTiO3和SrNb0.2Ti0.8O3薄膜晶格参数的影响及激光感生热电电压效应.  , 2008, 57(7): 4424-4427. doi: 10.7498/aps.57.4424
    [14] 李阳平, 刘正堂, 赵海龙, 刘文婷, 闫 锋. GaP薄膜的射频磁控溅射沉积及其计算机模拟.  , 2007, 56(5): 2937-2944. doi: 10.7498/aps.56.2937
    [15] 张红鹰, 吴师岗. 飞秒激光作用下薄膜破坏的力学过程.  , 2007, 56(9): 5314-5317. doi: 10.7498/aps.56.5314
    [16] 夏志林, 范正修, 邵建达. 激光作用下薄膜中的电子-声子散射速率.  , 2006, 55(6): 3007-3012. doi: 10.7498/aps.55.3007
    [17] 唐秋文, 沈明荣, 方 亮. 两种不同(Ba,Sr)TiO3薄膜介电-温度特性的研究.  , 2006, 55(3): 1346-1350. doi: 10.7498/aps.55.1346
    [18] 刘元富, 韩建民, 张谷令, 王久丽, 陈光良, 李雪明, 冯文然, 范松华, 刘赤子, 杨思泽. 脉冲高能量密度等离子体沉积(Ti, Al)N薄膜组织及其性能研究.  , 2005, 54(3): 1301-1305. doi: 10.7498/aps.54.1301
    [19] 刘 震, 王淑芳, 赵嵩卿, 周岳亮. 利用脉冲激光沉积技术在双轴织构的Ni基带上外延CeO2薄膜.  , 2005, 54(12): 5820-5823. doi: 10.7498/aps.54.5820
    [20] 傅广生, 于威, 王淑芳, 李晓苇, 张连水, 韩理. 辉光放电等离子体辅助XeCl准分子激光溅射沉积碳氮薄膜.  , 2001, 50(11): 2263-2268. doi: 10.7498/aps.50.2263
计量
  • 文章访问数:  4410
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-02
  • 修回日期:  2023-01-06
  • 上网日期:  2023-02-01
  • 刊出日期:  2023-05-05

/

返回文章
返回
Baidu
map