搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

层状Bi1–xSbxSe纳米薄膜的制备及其热电性能研究

许静 何梓民 杨文龙 吴荣 赖晓芳 简基康

引用本文:
Citation:

层状Bi1–xSbxSe纳米薄膜的制备及其热电性能研究

许静, 何梓民, 杨文龙, 吴荣, 赖晓芳, 简基康

Preparation and thermoelectric properties of layered Bi1–xSbxSe nanocrystalline films

Xu Jing, He Zi-Min, Yang Wen-Long, Wu Rong, Lai Xiao-Fang, Jian Ji-Kang
PDF
HTML
导出引用
  • BiSe是近年来发现的具有超低本征晶格热导率材料, 显示出比传统的Bi2Se3更高的热电性能潜力. 本文采用真空热蒸发法制备了具有(00l)取向生长的N型纯相BiSe纳米晶薄膜, 并通过Sb共蒸发, 制备得到不同掺杂浓度的Bi1–xSbxSe热电薄膜. 对薄膜样品物相、形貌、组份、晶格振动、化学价态及电输运性质进行了表征. 结果显示, Sb进入到BiSe晶格中取代了Bi原子的位置, 而Sb原子与Bi原子之间的金属性差异使得掺杂后的样品载流子浓度下降, 塞贝克系数上升. 同时, 随着Sb掺杂浓度的增大, 组成薄膜的纳米晶粒尺寸减小, 薄膜面内形成更加致密的层状结构, 有利于载流子输运,导致样品的载流子迁移率由13.6 cm2/(V·s)显著提升至19.3 cm2/(V·s). 受到Seebeck系数与电导率的综合作用, Bi0.76Sb0.24Se薄膜具有2.18 μW/(cm·K2)的室温功率因子, 相对于未掺杂BiSe薄膜功率因子得到提升. 本工作表明BiSe基薄膜在近室温热电薄膜器件中具有潜在的应用前景.
    BiSe is found to be a promising near-room-temperature thermoelectric material with higher performance than traditional Bi2Se3 due to its ultra-low intrinsic lattice thermal conductivity. In this work, N-type BiSe nanocrystalline thin films with (00l) preferred orientation are first prepared via vacuum thermal evaporation method, and Bi1–xSbxSe nanocrystalline films with different doping concentrations are obtained by Sb co-evaporation. The phases, morphologies, chemical compositions and valences, lattical vibrations, and electrical properties of these films are characterized. It is found that the Sb dopant successfully enters into the crystal lattice and replaces the Bi site of Bi2Se3 quintuple layers and Bi2 bilayers without selectivity, and the difference of gold properties between Sb atom and Bi atoms leads the carrier concentration to sharply decrease and the Seebeck coefficient in doped BiSe to increase. Meanwhile,the sizes of nanocrystals in the films decrease and the denser layered structure is formed due to the Sb doping, which is conducive to the carrier transport in the samples, and the in-plane carrier mobility of the films effectively increases from 13.6 cm2·V–1·s–1 (BiSe) to 19.3 cm2·V–1·s–1 (Bi0.65Sb0.35Se). The maximum room-temperature power factor of 2.18 μW·cm–1·K–2 is obtained in Bi0.76Sb0.24Se, which is higher than that in undoped BiSe. The results of this work indicate that the BiSe-based thin films have potential applications in room temperature thermoelectric thin film devices.
      通信作者: 简基康, jianjikang@126.com
    • 基金项目: 国家自然科学基金(批准号: 52072078, 51702058)资助的课题.
      Corresponding author: Jian Ji-Kang, jianjikang@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52072078, 51702058).
    [1]

    Zhou M, Al-Furjan M S H, Zou J, Liu W 2018 Renew. Sust. Energ. Rev. 82 3582Google Scholar

    [2]

    Kraemer D, Jie Q, McEnaney K, Cao F, Liu W, Weinstein L A, Loomis J, Ren Z, Chen G 2016 Nat. Energy 1 16153Google Scholar

    [3]

    Hasan M N, Wahid H, Nayan N, Mohamed Ali M S 2020 Int. J. Energy Res. 44 6170Google Scholar

    [4]

    Chen A, Madan D, Wright P K, Evans J W 2011 J. Micromech. Microeng. 21 104006Google Scholar

    [5]

    Orr B, Akbarzadeh A, Mochizuki M, Singh R 2016 Appl. Therm. Eng. 101 490Google Scholar

    [6]

    Lee K H, Kim S W 2017 J. Korean Ceram. Soc. 54 75Google Scholar

    [7]

    Samanta M, Pal K, Pal P, Waghmare U V, Biswas K 2018 J. Am. Chem. Soc. 140 5866Google Scholar

    [8]

    Lind H, Lidin S, Häussermann U 2005 Phys. Rev. B. 72 184101Google Scholar

    [9]

    Ju Z, Hou Y, Bernard A, Taufour V, Yu D, Kauzlarich S M 2019 CS Appl. Electron. 1 1917

    [10]

    Samanta M, Biswas K 2020 Chem. Mater. 32 8819Google Scholar

    [11]

    Zhang J, Huang G 2014 Solid State Commun. 197 34Google Scholar

    [12]

    Valla T, Ji H, Schoop L, Weber A, Pan Z-H, Sadowski J, Vescovo E, Fedorov A, Caruso A, Gibson Q 2012 Phys. Rev. B. 86 241101Google Scholar

    [13]

    Ouyang Y, Zhang Z W, Li D F, Chen J, Zhang G 2019 Ann. Phys. (Berlin) 531 1800437Google Scholar

    [14]

    Qiu B, Ruan X L 2009 Phys. Rev. B 80 165203Google Scholar

    [15]

    He J, Hu X X, Li D F, Chen J 2022 Nano Res. 15 3804Google Scholar

    [16]

    Shen X C, Zhang X, Zhang B, Wang G Y, He J, Zhou X Y 2020 Rare Metals 39 1374Google Scholar

    [17]

    He Z M, Lan K L, Chen S Y, Dong Y Z, Lai X F, Liu F S, Jian J K 2022 J. Alloys Compd. 901 163652Google Scholar

    [18]

    Shi X L, Zou J, Chen Z G 2020 Chem. Rev. 120 7399Google Scholar

    [19]

    魏江涛, 杨亮亮, 秦源浩, 宋培帅, 张明亮, 杨富华, 王晓东 2021 70 047301Google Scholar

    Wei J T, Yang L L, Qin Y H, Song P S, Zhang M L, Yang F H, Wang X D 2021 Acta Phys. Sin. 70 047301Google Scholar

    [20]

    Venkatasubramanian R, Siivola E, Colpitts T, O'Quinn B 2001 Nature 413 597Google Scholar

    [21]

    Li J F, Liu W S, Zhao L D, Zhou M 2010 NPG Asia Mater. 2 152Google Scholar

    [22]

    Wu H, Carrete J, Zhang Z, Qu Y, Shen X, Wang Z, Zhao L-D, He J 2014 NPG Asia Mater. 6 e108Google Scholar

    [23]

    Dun C, Hewitt C A, Huang H, Xu J, Zhou C, Huang W, Cui Y, Zhou W, Jiang Q, Carroll D L 2015 Nano Energy 18 306Google Scholar

    [24]

    陈赟斐, 魏锋, 王赫, 赵未昀, 邓元 2021 70 207303Google Scholar

    Chen Y F, Wei F, Wang H, Zhao W Y, Deng Y 2021 Acta Phys. Sin. 70 207303Google Scholar

    [25]

    Adam A M, El-Khouly A, Diab A K 2021 J. Alloys Compd. 851 156887Google Scholar

    [26]

    Lu M P, Liao C N, Huang J Y, Hsu H C 2015 Inorg. Chem. 54 7438Google Scholar

    [27]

    Kim K, Kim G, Kim S I, Lee K H, Lee W 2019 J. Alloys Compd. 772 593Google Scholar

    [28]

    Chen C L, Wang H, Chen Y Y, Day T, Snyder G J 2014 J. Mater. Chem. A. 2 11171Google Scholar

    [29]

    Han M K, Hoang K, Kong H, Pcionek R, Uher C, Paraskevopoulos K M, Mahanti S D, Kanatzidis M G 2008 Chem. Mater. 20 3512Google Scholar

    [30]

    Ibrahim E M M, Hakeem A M A, Adam A M M, Shokr E K 2015 Phys. Scr. 90 045802Google Scholar

    [31]

    Bando H, Koizumi K, Oikawa Y, Daikohara K, Kulbachinskii V A, Ozaki H 2000 J. Phys. Condens. Matter 12 5607Google Scholar

    [32]

    Jia F, Liu Y Y, Zhang Y F, Shu X, Chen L, Wu L M 2020 J. Am. Chem. Soc. 142 12536Google Scholar

    [33]

    Liu X, Chen J, Luo M, Leng M, Xia Z, Zhou Y, Qin S, Xue D J, Lv L, Huang H, Niu D, Tang J 2014 ACS Appl. Mater. Interfaces 6 10687Google Scholar

    [34]

    Zhang C, Yin H, Han M, Dai Z, Pang H, Zheng Y, Lan Y Q, Bao J, Zhu J 2014 ACS Nano 8 3761Google Scholar

    [35]

    Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554Google Scholar

    [36]

    Jia B, Liu S, Li G, Liu S, Zhou Y, Wang Q 2019 Thin Solid Films 672 133Google Scholar

  • 图 1  Bi1–xSbxSe纳米晶薄膜(x = 0, 0.15, 0.24, 0.35)的物相表征 (a) XRD图谱; (b)图(a)中(005)峰的放大图谱; (c) 晶格常数随Sb掺杂浓度的变化

    Fig. 1.  (a) XRD patterns of Bi1–xSbxSe films (x = 0, 0.15, 0.24, 0.35); (b) enlarged pattern of (005) peak in (a); (c) the lattice constant varies with the concentrations of Sb .

    图 2  Bi1–xSbxSe纳米薄膜(x = 0, 0.15, 0.24, 0.35)表面和截面的SEM图像 (a) BiSe; (b) Bi0.85Sb0.15Se; (c) Bi0.76Sb0.24Se; (d) Bi0.65Sb0.35Se

    Fig. 2.  SEM images of surface and cross section of Bi1–xSbxSe films (a) BiSe; (b) Bi0.85Sb0.15Se; (c) Bi0.76Sb0.24Se; (d) Bi0.65Sb0.35Se.

    图 3  Bi0.65Sb0.35Se薄膜的mapping图像 (a) 表面; (b) 截面

    Fig. 3.  Mapping images of (a) surface and (b) cross section of Bi0.65Sb0.35Se thin film.

    图 4  Bi1–xSbxSe薄膜(x = 0, 0.15, 0.24, 0.35)在激发波长为532 nm下的散射拉曼图谱

    Fig. 4.  Raman scattering spectra of Bi1–xSbxSe films (x = 0, 0.15, 0.24, 0.35) with an excitation laser wavelength of 532 nm.

    图 5  Bi0.65Sb0.35Se薄膜样品的XPS谱 (a) 总谱; (b) Bi 4f; (c) Sb 3d; (d) Se 3d

    Fig. 5.  XPS spectrum of Bi0.65Sb0.35Se films: (a) Total spectrum; (b) Bi 4f; (c) Sb 3d; (d) Se 3d.

    图 6  Bi1–xSbxSe纳米晶薄膜(x = 0, 0.15, 0.24, 0.35)在不同温度下的 (a) 载流子浓度; (b) 迁移率; (c) 面内电导率; (d) 塞贝克系数; (e) 功率因子

    Fig. 6.  Temperature dependence of (a) carrier concentrations, (b) electron mobilities, (c) the in-plane conductivities, (d) Seebeck coefficients and (e) power factors for Bi1–xSbxSe (x = 0, 0.15, 0.24, 0.35) samples.

    表 1  Bi1–xSbxSe纳米薄膜的实验条件

    Table 1.  Experimental conditions of Bi1–xSbxSe thin films.

    样品(Bi+Bi2Se3)蒸发源温度/℃Sb蒸发源温度/℃源与衬底的距离/cm衬底温度/
    蒸镀时间/
    min
    BiSe5001047510
    Bi0.85Sb0.15Se5003001047510
    Bi0.76Sb0.24Se5003501047510
    Bi0.65Sb0.35Se5003751047510
    下载: 导出CSV

    表 2  Bi1–xSbxSe薄膜的元素原子比

    Table 2.  Atomic ratio of Bi1–xSbxSe thin films.

    样品Bi/%Sb/%Se/%
    BiSe49.9750.03
    Bi0.85Sb0.15Se42.377.5350.10
    Bi0.76Sb0.24Se38.0111.9150.08
    Bi0.65Sb0.35Se32.4917.4550.05
    下载: 导出CSV

    表 3  Bi1–xSbxSe (x = 0, 0.15, 0.24, 0.35)薄膜的拉曼振动峰(cm–1)

    Table 3.  Raman vibration peaks (cm–1) of Bi1–x SbxSe (x = 0, 0.15, 0.24, 0.35) films.

    BiSeBi0.85Sb0.15SeBi0.76Sb0.24SeBi0.65Sb0.35Se
    $ \rm A^1_{1g} $68.170.570.971.4
    Eg93.795.495.996.7
    $ \rm E^2_g $120.6121.4122.1122.9
    $\rm A^2_{1g}$155.4157.9160.5161.5
    下载: 导出CSV

    表 4  Bi1–xSbxSe(x = 0, 0.15, 0.24, 0.35)薄膜在室温下的霍尔效应测试结果

    Table 4.  The electrical transport properties of Bi1–xSbxSe (x = 0, 0.15, 0.24, 0.35) thin films at room temperature.

    薄膜样品载流子浓度
    n/(1020 cm–3)
    载流子迁移率
    μ/(cm2·V–1·s–1)
    电导率
    σ/(S·cm–1)
    BiSe2.513.6544.2
    Bi0.85Sb0.15Se1.916.7502.3
    Bi0.76Sb0.24Se1.618.4468.8
    Bi0.65Sb0.35Se1.319.3416.8
    下载: 导出CSV
    Baidu
  • [1]

    Zhou M, Al-Furjan M S H, Zou J, Liu W 2018 Renew. Sust. Energ. Rev. 82 3582Google Scholar

    [2]

    Kraemer D, Jie Q, McEnaney K, Cao F, Liu W, Weinstein L A, Loomis J, Ren Z, Chen G 2016 Nat. Energy 1 16153Google Scholar

    [3]

    Hasan M N, Wahid H, Nayan N, Mohamed Ali M S 2020 Int. J. Energy Res. 44 6170Google Scholar

    [4]

    Chen A, Madan D, Wright P K, Evans J W 2011 J. Micromech. Microeng. 21 104006Google Scholar

    [5]

    Orr B, Akbarzadeh A, Mochizuki M, Singh R 2016 Appl. Therm. Eng. 101 490Google Scholar

    [6]

    Lee K H, Kim S W 2017 J. Korean Ceram. Soc. 54 75Google Scholar

    [7]

    Samanta M, Pal K, Pal P, Waghmare U V, Biswas K 2018 J. Am. Chem. Soc. 140 5866Google Scholar

    [8]

    Lind H, Lidin S, Häussermann U 2005 Phys. Rev. B. 72 184101Google Scholar

    [9]

    Ju Z, Hou Y, Bernard A, Taufour V, Yu D, Kauzlarich S M 2019 CS Appl. Electron. 1 1917

    [10]

    Samanta M, Biswas K 2020 Chem. Mater. 32 8819Google Scholar

    [11]

    Zhang J, Huang G 2014 Solid State Commun. 197 34Google Scholar

    [12]

    Valla T, Ji H, Schoop L, Weber A, Pan Z-H, Sadowski J, Vescovo E, Fedorov A, Caruso A, Gibson Q 2012 Phys. Rev. B. 86 241101Google Scholar

    [13]

    Ouyang Y, Zhang Z W, Li D F, Chen J, Zhang G 2019 Ann. Phys. (Berlin) 531 1800437Google Scholar

    [14]

    Qiu B, Ruan X L 2009 Phys. Rev. B 80 165203Google Scholar

    [15]

    He J, Hu X X, Li D F, Chen J 2022 Nano Res. 15 3804Google Scholar

    [16]

    Shen X C, Zhang X, Zhang B, Wang G Y, He J, Zhou X Y 2020 Rare Metals 39 1374Google Scholar

    [17]

    He Z M, Lan K L, Chen S Y, Dong Y Z, Lai X F, Liu F S, Jian J K 2022 J. Alloys Compd. 901 163652Google Scholar

    [18]

    Shi X L, Zou J, Chen Z G 2020 Chem. Rev. 120 7399Google Scholar

    [19]

    魏江涛, 杨亮亮, 秦源浩, 宋培帅, 张明亮, 杨富华, 王晓东 2021 70 047301Google Scholar

    Wei J T, Yang L L, Qin Y H, Song P S, Zhang M L, Yang F H, Wang X D 2021 Acta Phys. Sin. 70 047301Google Scholar

    [20]

    Venkatasubramanian R, Siivola E, Colpitts T, O'Quinn B 2001 Nature 413 597Google Scholar

    [21]

    Li J F, Liu W S, Zhao L D, Zhou M 2010 NPG Asia Mater. 2 152Google Scholar

    [22]

    Wu H, Carrete J, Zhang Z, Qu Y, Shen X, Wang Z, Zhao L-D, He J 2014 NPG Asia Mater. 6 e108Google Scholar

    [23]

    Dun C, Hewitt C A, Huang H, Xu J, Zhou C, Huang W, Cui Y, Zhou W, Jiang Q, Carroll D L 2015 Nano Energy 18 306Google Scholar

    [24]

    陈赟斐, 魏锋, 王赫, 赵未昀, 邓元 2021 70 207303Google Scholar

    Chen Y F, Wei F, Wang H, Zhao W Y, Deng Y 2021 Acta Phys. Sin. 70 207303Google Scholar

    [25]

    Adam A M, El-Khouly A, Diab A K 2021 J. Alloys Compd. 851 156887Google Scholar

    [26]

    Lu M P, Liao C N, Huang J Y, Hsu H C 2015 Inorg. Chem. 54 7438Google Scholar

    [27]

    Kim K, Kim G, Kim S I, Lee K H, Lee W 2019 J. Alloys Compd. 772 593Google Scholar

    [28]

    Chen C L, Wang H, Chen Y Y, Day T, Snyder G J 2014 J. Mater. Chem. A. 2 11171Google Scholar

    [29]

    Han M K, Hoang K, Kong H, Pcionek R, Uher C, Paraskevopoulos K M, Mahanti S D, Kanatzidis M G 2008 Chem. Mater. 20 3512Google Scholar

    [30]

    Ibrahim E M M, Hakeem A M A, Adam A M M, Shokr E K 2015 Phys. Scr. 90 045802Google Scholar

    [31]

    Bando H, Koizumi K, Oikawa Y, Daikohara K, Kulbachinskii V A, Ozaki H 2000 J. Phys. Condens. Matter 12 5607Google Scholar

    [32]

    Jia F, Liu Y Y, Zhang Y F, Shu X, Chen L, Wu L M 2020 J. Am. Chem. Soc. 142 12536Google Scholar

    [33]

    Liu X, Chen J, Luo M, Leng M, Xia Z, Zhou Y, Qin S, Xue D J, Lv L, Huang H, Niu D, Tang J 2014 ACS Appl. Mater. Interfaces 6 10687Google Scholar

    [34]

    Zhang C, Yin H, Han M, Dai Z, Pang H, Zheng Y, Lan Y Q, Bao J, Zhu J 2014 ACS Nano 8 3761Google Scholar

    [35]

    Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554Google Scholar

    [36]

    Jia B, Liu S, Li G, Liu S, Zhou Y, Wang Q 2019 Thin Solid Films 672 133Google Scholar

  • [1] 李睿英, 罗婷婷, 李貌, 陈硕, 鄢永高, 吴劲松, 苏贤礼, 张清杰, 唐新峰. n型Bi2–x SbxTe3–ySey基化合物的缺陷结构调控与电热输运性能.  , 2024, 73(9): 097101. doi: 10.7498/aps.73.20240098
    [2] 李强, 陈硕, 刘可可, 鲁志强, 胡芹, 冯利萍, 张清杰, 吴劲松, 苏贤礼, 唐新峰. n型Bi2Te3基化合物的类施主效应和热电性能.  , 2023, 72(9): 097101. doi: 10.7498/aps.72.20230231
    [3] 陈赟斐, 魏锋, 王赫, 赵未昀, 邓元. 高性能Bi2Te3–xSex热电薄膜的可控生长.  , 2021, 70(20): 207303. doi: 10.7498/aps.70.20211090
    [4] 汪静丽, 陈子玉, 陈鹤鸣. 基于Si3N4/SiNx/Si3N4三明治结构的偏振无关1 × 2多模干涉型解复用器的设计.  , 2020, 69(5): 054206. doi: 10.7498/aps.69.20191449
    [5] 邹平, 吕丹, 徐桂英. 高压烧结制备Tb掺杂n型(Bi1–xTbx)2(Te0.9Se0.1)3合金及其微结构和热电性能.  , 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [6] 潘北诚, 史庆藩, 孙刚. 颗粒堆准静态崩塌及慢速流动过程中的堆结构研究.  , 2014, 63(1): 014703. doi: 10.7498/aps.63.014703
    [7] 林琦, 陈余行, 吴建宝, 孔宗敏. N掺杂对zigzag型石墨烯纳米带的能带结构和输运性质的影响.  , 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [8] 胡晓君, 胡衡, 陈小虎, 许贝. 磷离子注入纳米金刚石薄膜的n型导电性能与微结构研究.  , 2011, 60(6): 068101. doi: 10.7498/aps.60.068101
    [9] 王德义, 高书霞, 李刚, 赵鸣. 溶胶-凝胶法制备Li-N双掺p型ZnO薄膜的结构、光学和电学性能.  , 2010, 59(5): 3473-3480. doi: 10.7498/aps.59.3473
    [10] 苏贤礼, 唐新峰, 李涵. 熔体旋甩工艺对n型InSb化合物的微结构及热电性能的影响.  , 2010, 59(4): 2860-2866. doi: 10.7498/aps.59.2860
    [11] 周龙, 李涵, 苏贤礼, 唐新峰. In掺杂对n型方钴矿化合物的微结构及热电性能的影响规律.  , 2010, 59(10): 7219-7224. doi: 10.7498/aps.59.7219
    [12] 卢鹏, 侯国付, 袁育杰, 杨瑞霞, 赵颖. n型掺杂层结构对n-i-p型微晶硅电池性能和光致衰退特性的影响.  , 2010, 59(6): 4330-4336. doi: 10.7498/aps.59.4330
    [13] 王善禹, 谢文杰, 李涵, 唐新峰. 熔体旋甩法合成n型(Bi0.85Sb0.15)2(Te1-xSex)3化合物的微结构及热电性能.  , 2010, 59(12): 8927-8933. doi: 10.7498/aps.59.8927
    [14] 戴明, 廖远宝, 刘东, 甘新慧, 徐岭, 马忠元, 徐骏, 陈坤基. CdTe纳米晶及层状纳米晶薄膜的生长及其光荧光性质.  , 2009, 58(10): 7246-7249. doi: 10.7498/aps.58.7246
    [15] 刘强, 程新路, 范勇恒, 杨向东. Al和N共掺p型Zn1-xMgxO电子结构的第一性原理计算.  , 2009, 58(4): 2684-2691. doi: 10.7498/aps.58.2684
    [16] 冀子武, 三野弘文, 小嵨映二, 秋本良一, 嶽山正二郎. 调制n型掺杂ZnSe/BeTe Ⅱ型量子阱结构的发光特性.  , 2008, 57(5): 3260-3266. doi: 10.7498/aps.57.3260
    [17] 袁育杰, 侯国付, 薛俊明, 韩晓艳, 刘云周, 杨兴云, 刘丽杰, 董 培, 赵 颖, 耿新华. 微晶硅n-i-p太阳电池中n型掺杂层对本征层结构特性的影响.  , 2008, 57(6): 3892-3897. doi: 10.7498/aps.57.3892
    [18] 苏贤礼, 唐新峰, 李 涵, 邓书康. Ga填充n型方钴矿化合物的结构及热电性能.  , 2008, 57(10): 6488-6493. doi: 10.7498/aps.57.6488
    [19] 蒋 俊, 许高杰, 崔 平, 陈立东. TeI4掺杂量对n型Bi2Te3基烧结材料热电性能的影响.  , 2006, 55(9): 4849-4853. doi: 10.7498/aps.55.4849
    [20] 吕 强, 荣剑英, 赵 磊, 张红晨, 胡建民, 信江波. 热压工艺参数对n型和p型Bi2Te3基赝三元热电材料电学性能的影响.  , 2005, 54(7): 3321-3326. doi: 10.7498/aps.54.3321
计量
  • 文章访问数:  4966
  • PDF下载量:  173
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-27
  • 修回日期:  2022-05-27
  • 上网日期:  2022-09-18
  • 刊出日期:  2022-10-05

/

返回文章
返回
Baidu
map