搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Pancharatnam-Berry相位调控产生贝塞尔光束

陈欢 凌晓辉 何武光 李钱光 易煦农

引用本文:
Citation:

基于Pancharatnam-Berry相位调控产生贝塞尔光束

陈欢, 凌晓辉, 何武光, 李钱光, 易煦农

Generation of Bessel beam by manipulating Pancharatnam-Berry phase

Chen Huan, Ling Xiao-Hui, He Wu-Guang, Li Qian-Guang, Yi Xu-Nong
PDF
导出引用
  • 提出了一种基于Pancharatnam-Berry相位设计制作的超表面平面轴棱锥透镜产生贝塞尔光束的方法.理论分析表明:由于Pancharatnam-Berry相位的自旋相关性,设计的平面轴棱锥透镜需采用左旋圆偏振光入射才能有效地产生贝塞尔光束.超表面微结构单元的旋转率与最大无衍射距离成反比,这提供了一个获得更大无衍射距离的方便的途径.最后,搭建了一套基于平面轴棱锥透镜的贝塞尔光束产生系统,实验结果与数值模拟结果一致.这些结论有助于设计制作更多新颖的基于Pancharatnam-Berry相位的平面光子学器件.
    Bessel beam is one of diffraction-free beams and has some peculiar properties. Varieties of its applications have been found, such as microparticle manipulating, material processing and biological studies. In this work, we propose a method of creating a Bessel beam by manipulating Pancharatnam-Berry phase. Using femtosecond laser, nano waveplatelets are written on a fused silicon glass to form a metasurface. The optical axis of waveplatelets rotating in the radial direction can produce the space-varying Pancharatnam-Berry phase. The designed metasurface acts as a planar axicon to generate Bessel beams by replacing the traditional one. A Jones calculation is employed to analyze the transformation of the metasurface. The theoretical results indicate that a left-handed circularly polarized light passing through the planar axicon is convergent, while a right-handed circularly polarized one is divergent. The intrinsic physical reason is that Pancharatnam-Berry phase is spin-dependent. Therefore, Bessel beams are generated by the planar axicon only when a left-handed circularly polarized light inputs the system. It is notable that the maximum nondiffracting distance is determined by the rate of rotation of the metasurface microstructure. By reducing the rate of rotation, we can easily obtain a longer nondiffracting distance, thus avoiding the problem that the base angle of the traditional axicon is too small to fabricate. According to the Fresnel diffraction integral, we simulate the propagation of the field emerging from the planar axicon and obtain the intensity distributions behind the planar axicon with different distances. The results show that the intensity pattern remains unchanged in the propagating process and possesses the propagation properties of Bessel beam. It implies that approximate nondiffraction Bessel beams can be achieved by employing the planar axicon with metasurface. Finally, we set up an experimental system with the Pancharatnam-Berry phase metasurface with period d=1000 upm to verify the theoretical analysis. Theoretically, the maximum nondiffraction distance is 7.9 m. In the shaded region, we measure the intensity distributions at different distances. The experimental results are in good agreement with the simulation results, so the planar axicon based on Pancharatnam-Berry phase can be an effective Bessel beam generator. We believe that these results are helpful for developing more spin-dependent photonic devices.
      通信作者: 易煦农, xnyi@szu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11547017,11547018);湖北省教育厅科学研究项目(批准号:B2015031)和特色果蔬质量安全控制湖北省重点实验室开放基金(批准号:2016K01)资助的课题.
      Corresponding author: Yi Xu-Nong, xnyi@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.11547017,11547018),the Foundation of Hubei Educational Committee,China (Grant No.B2015031),and the Foundation of Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables,China.
    [1]

    Bouchal Z, Wagner J, Chlup M 1998 Opt. Commun. 151 207

    [2]

    Durnin J, Miceli J J, Eberly J H 1987 Phys. Rev. Lett. 58 1499

    [3]

    McGloin D, Dholakia K 2005 Contemp. Phys. 46 15

    [4]

    Zhao L, Wang F, Jiang L, Lu Y, Zhao W, Xie J, Li X 2015 Chin. Opt. Lett. 13 041405

    [5]

    Cai Y, Lv X 2007 Opt. Commun. 274 1

    [6]

    Chen B, Pu J 2009 Chin. Phys. B 18 1033

    [7]

    Scott G, McArdle N 1992 Opt. Eng. 31 2640

    [8]

    Sun Q, Zhou K, Fang G, Liu Z, Liu S 2012 Chin. Phys. B 21 014208

    [9]

    Wu F, Chen Y, Guo D 2007 Appl. Opt. 46 4943

    [10]

    Turuenen J, Vasara A, Friberg A T 1988 Appl. Opt. 27 3959

    [11]

    Sochacki J, Kolodziejczyk A, Jaroszewicz Z, Bara S 1992 Appl. Opt. 31 5326

    [12]

    Zheng W T, Wu F T, Zhang Q A, Cheng Z M 2012 Acta Phys. Sin. 61 144201 (in Chinese)[郑维涛, 吴逢铁, 张前安, 程治明 2012 61 144201]

    [13]

    Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1232009

    [14]

    Li X, Pu M, Zhao Z, Ma X, Jin J, Wang Y, Gao P, Luo X 2016 Sci. Rep. 6 20524

    [15]

    Ke Y, Liu Y, Zhou J, Liu Y, Luo H, Wen S 2016 Appl. Phys. Lett. 108 101102

    [16]

    Bomzon Z, Biener G, Kleiner V, Hasman E 2001 Opt. Lett. 26 33

    [17]

    Pfeiffer C, Grbic A 2013 Phys. Rev. Lett. 110 197401

    [18]

    Ni X, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M 2012 Science 335 427

    [19]

    Yu N, Aieta F, Genevet P, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 6328

    [20]

    Liu L, Zhang X, Kenney M, Su X, Xu N, Ouyang C, Shi Y, Han J, Zhang W, Zhang S 2014 Adv. Mater. 26 5031

    [21]

    Kang M, Guo Q, Chen J, Gu B, Li Y, Wang H 2011 Phys. Rev. A 84 045803

    [22]

    Kang M, Chen J, Wang X, Wang H 2012 J. Opt. Soc. Am. B 29 572

    [23]

    Lin J, Wang Q, Yuan G, Du L, Kou S S, Yuan X 2015 Sci. Rep. 5 10529

    [24]

    Yi X, Ling X, Zhang Z, Li Y, Zhou X, Liu Y, Chen S, Luo H, Wen S 2014 Opt. Express 22 17207

    [25]

    Beresna M, Gecevičius M, Kazansky P G, Gertus T 2011 Appl. Phys. Lett. 98 201101

    [26]

    Liu Y, Ling X, Yi X, Zhou X, Luo H, Wen S 2014 Appl. Phys. Lett. 104 191110

    [27]

    Yi X, Liu Y, Ling X, Zhou X, Ke Y, Luo H, Wen S, Fan D 2015 Phys. Rev. A 91 023801

    [28]

    Courtial J 1999 Opt. Commun. 171 179

  • [1]

    Bouchal Z, Wagner J, Chlup M 1998 Opt. Commun. 151 207

    [2]

    Durnin J, Miceli J J, Eberly J H 1987 Phys. Rev. Lett. 58 1499

    [3]

    McGloin D, Dholakia K 2005 Contemp. Phys. 46 15

    [4]

    Zhao L, Wang F, Jiang L, Lu Y, Zhao W, Xie J, Li X 2015 Chin. Opt. Lett. 13 041405

    [5]

    Cai Y, Lv X 2007 Opt. Commun. 274 1

    [6]

    Chen B, Pu J 2009 Chin. Phys. B 18 1033

    [7]

    Scott G, McArdle N 1992 Opt. Eng. 31 2640

    [8]

    Sun Q, Zhou K, Fang G, Liu Z, Liu S 2012 Chin. Phys. B 21 014208

    [9]

    Wu F, Chen Y, Guo D 2007 Appl. Opt. 46 4943

    [10]

    Turuenen J, Vasara A, Friberg A T 1988 Appl. Opt. 27 3959

    [11]

    Sochacki J, Kolodziejczyk A, Jaroszewicz Z, Bara S 1992 Appl. Opt. 31 5326

    [12]

    Zheng W T, Wu F T, Zhang Q A, Cheng Z M 2012 Acta Phys. Sin. 61 144201 (in Chinese)[郑维涛, 吴逢铁, 张前安, 程治明 2012 61 144201]

    [13]

    Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1232009

    [14]

    Li X, Pu M, Zhao Z, Ma X, Jin J, Wang Y, Gao P, Luo X 2016 Sci. Rep. 6 20524

    [15]

    Ke Y, Liu Y, Zhou J, Liu Y, Luo H, Wen S 2016 Appl. Phys. Lett. 108 101102

    [16]

    Bomzon Z, Biener G, Kleiner V, Hasman E 2001 Opt. Lett. 26 33

    [17]

    Pfeiffer C, Grbic A 2013 Phys. Rev. Lett. 110 197401

    [18]

    Ni X, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M 2012 Science 335 427

    [19]

    Yu N, Aieta F, Genevet P, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 6328

    [20]

    Liu L, Zhang X, Kenney M, Su X, Xu N, Ouyang C, Shi Y, Han J, Zhang W, Zhang S 2014 Adv. Mater. 26 5031

    [21]

    Kang M, Guo Q, Chen J, Gu B, Li Y, Wang H 2011 Phys. Rev. A 84 045803

    [22]

    Kang M, Chen J, Wang X, Wang H 2012 J. Opt. Soc. Am. B 29 572

    [23]

    Lin J, Wang Q, Yuan G, Du L, Kou S S, Yuan X 2015 Sci. Rep. 5 10529

    [24]

    Yi X, Ling X, Zhang Z, Li Y, Zhou X, Liu Y, Chen S, Luo H, Wen S 2014 Opt. Express 22 17207

    [25]

    Beresna M, Gecevičius M, Kazansky P G, Gertus T 2011 Appl. Phys. Lett. 98 201101

    [26]

    Liu Y, Ling X, Yi X, Zhou X, Luo H, Wen S 2014 Appl. Phys. Lett. 104 191110

    [27]

    Yi X, Liu Y, Ling X, Zhou X, Ke Y, Luo H, Wen S, Fan D 2015 Phys. Rev. A 91 023801

    [28]

    Courtial J 1999 Opt. Commun. 171 179

  • [1] 赖镇鑫, 张也, 仲帆, 王强, 肖彦玲, 祝世宁, 刘辉. 基于合成维度拓扑外尔点的波长选择热辐射超构表面.  , 2024, 73(11): 117802. doi: 10.7498/aps.73.20240512
    [2] 姜在超, 宫正, 钟芸襄, 崔彬, 邹斌, 杨玉平. 基于几何相位的太赫兹编码超表面反射器研制与测试.  , 2023, 72(24): 248707. doi: 10.7498/aps.72.20230989
    [3] 范辉颖, 罗杰. 非厄密电磁超表面研究进展.  , 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [4] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器.  , 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [5] 高喜, 唐李光. 基于双层超表面的宽带、高效透射型轨道角动量发生器.  , 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [6] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控.  , 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [7] 谢智强, 贺炎亮, 王佩佩, 苏明样, 陈学钰, 杨博, 刘俊敏, 周新星, 李瑛, 陈书青, 范滇元. 基于Pancharatnam-Berry相位超表面的二维光学边缘检测.  , 2020, 69(1): 014101. doi: 10.7498/aps.69.20191181
    [8] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束.  , 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [9] 周璐, 赵国忠, 李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生.  , 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [10] 魏祥, 吴智政, 曹战, 王园园, DzikiMbemba. 基于磁液变形镜生成弯曲轨迹自加速类贝塞尔光束.  , 2019, 68(11): 114701. doi: 10.7498/aps.68.20190063
    [11] 刘金安, 涂佳隆, 卢志利, 吴柏威, 胡琦, 马洪华, 陈欢, 易煦农. 基于Pancharatnam-Berry相位和动力学相位调控纵向光子自旋霍尔效应.  , 2019, 68(6): 064201. doi: 10.7498/aps.68.20182004
    [12] 刘会龙, 胡总华, 夏菁, 吕彦飞. 无衍射光束的产生及其应用.  , 2018, 67(21): 214204. doi: 10.7498/aps.67.20181227
    [13] 郭文龙, 王光明, 李海鹏, 侯海生. 单层超薄高效圆极化超表面透镜.  , 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [14] 刘莎, 李亚飞, 蔡先勇, 张楠. 像散飞秒贝塞尔光在石英玻璃中刻写双芯光波导的研究.  , 2016, 65(19): 194210. doi: 10.7498/aps.65.194210
    [15] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 圆极化波反射聚焦超表面.  , 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [16] 吴晨骏, 程用志, 王文颖, 何博, 龚荣洲. 基于十字形结构的相位梯度超表面设计与雷达散射截面缩减验证.  , 2015, 64(16): 164102. doi: 10.7498/aps.64.164102
    [17] 范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学. 基于交叉极化旋转相位梯度超表面的宽带异常反射.  , 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [18] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证.  , 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [19] 杜团结, 王涛, 吴逢铁. 轴棱锥对无衍射光束的线聚焦特性.  , 2013, 62(13): 134103. doi: 10.7498/aps.62.134103
    [20] 任志君, 吴琼, 周卫东, 吴根柱, 施逸乐. 空间诱导产生艾里-贝塞尔光弹研究.  , 2012, 61(17): 174207. doi: 10.7498/aps.61.174207
计量
  • 文章访问数:  9837
  • PDF下载量:  721
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-17
  • 修回日期:  2016-11-26
  • 刊出日期:  2017-02-05

/

返回文章
返回
Baidu
map