-
提出了一种基于Pancharatnam-Berry相位设计制作的超表面平面轴棱锥透镜产生贝塞尔光束的方法.理论分析表明:由于Pancharatnam-Berry相位的自旋相关性,设计的平面轴棱锥透镜需采用左旋圆偏振光入射才能有效地产生贝塞尔光束.超表面微结构单元的旋转率与最大无衍射距离成反比,这提供了一个获得更大无衍射距离的方便的途径.最后,搭建了一套基于平面轴棱锥透镜的贝塞尔光束产生系统,实验结果与数值模拟结果一致.这些结论有助于设计制作更多新颖的基于Pancharatnam-Berry相位的平面光子学器件.
-
关键词:
- 贝塞尔光束 /
- Pancharatnam-Berry相位 /
- 超表面
Bessel beam is one of diffraction-free beams and has some peculiar properties. Varieties of its applications have been found, such as microparticle manipulating, material processing and biological studies. In this work, we propose a method of creating a Bessel beam by manipulating Pancharatnam-Berry phase. Using femtosecond laser, nano waveplatelets are written on a fused silicon glass to form a metasurface. The optical axis of waveplatelets rotating in the radial direction can produce the space-varying Pancharatnam-Berry phase. The designed metasurface acts as a planar axicon to generate Bessel beams by replacing the traditional one. A Jones calculation is employed to analyze the transformation of the metasurface. The theoretical results indicate that a left-handed circularly polarized light passing through the planar axicon is convergent, while a right-handed circularly polarized one is divergent. The intrinsic physical reason is that Pancharatnam-Berry phase is spin-dependent. Therefore, Bessel beams are generated by the planar axicon only when a left-handed circularly polarized light inputs the system. It is notable that the maximum nondiffracting distance is determined by the rate of rotation of the metasurface microstructure. By reducing the rate of rotation, we can easily obtain a longer nondiffracting distance, thus avoiding the problem that the base angle of the traditional axicon is too small to fabricate. According to the Fresnel diffraction integral, we simulate the propagation of the field emerging from the planar axicon and obtain the intensity distributions behind the planar axicon with different distances. The results show that the intensity pattern remains unchanged in the propagating process and possesses the propagation properties of Bessel beam. It implies that approximate nondiffraction Bessel beams can be achieved by employing the planar axicon with metasurface. Finally, we set up an experimental system with the Pancharatnam-Berry phase metasurface with period d=1000 upm to verify the theoretical analysis. Theoretically, the maximum nondiffraction distance is 7.9 m. In the shaded region, we measure the intensity distributions at different distances. The experimental results are in good agreement with the simulation results, so the planar axicon based on Pancharatnam-Berry phase can be an effective Bessel beam generator. We believe that these results are helpful for developing more spin-dependent photonic devices.-
Keywords:
- Bessel beam /
- Pancharatnam-Berry phase /
- metasurface
[1] Bouchal Z, Wagner J, Chlup M 1998 Opt. Commun. 151 207
[2] Durnin J, Miceli J J, Eberly J H 1987 Phys. Rev. Lett. 58 1499
[3] McGloin D, Dholakia K 2005 Contemp. Phys. 46 15
[4] Zhao L, Wang F, Jiang L, Lu Y, Zhao W, Xie J, Li X 2015 Chin. Opt. Lett. 13 041405
[5] Cai Y, Lv X 2007 Opt. Commun. 274 1
[6] Chen B, Pu J 2009 Chin. Phys. B 18 1033
[7] Scott G, McArdle N 1992 Opt. Eng. 31 2640
[8] Sun Q, Zhou K, Fang G, Liu Z, Liu S 2012 Chin. Phys. B 21 014208
[9] Wu F, Chen Y, Guo D 2007 Appl. Opt. 46 4943
[10] Turuenen J, Vasara A, Friberg A T 1988 Appl. Opt. 27 3959
[11] Sochacki J, Kolodziejczyk A, Jaroszewicz Z, Bara S 1992 Appl. Opt. 31 5326
[12] Zheng W T, Wu F T, Zhang Q A, Cheng Z M 2012 Acta Phys. Sin. 61 144201 (in Chinese)[郑维涛, 吴逢铁, 张前安, 程治明 2012 61 144201]
[13] Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1232009
[14] Li X, Pu M, Zhao Z, Ma X, Jin J, Wang Y, Gao P, Luo X 2016 Sci. Rep. 6 20524
[15] Ke Y, Liu Y, Zhou J, Liu Y, Luo H, Wen S 2016 Appl. Phys. Lett. 108 101102
[16] Bomzon Z, Biener G, Kleiner V, Hasman E 2001 Opt. Lett. 26 33
[17] Pfeiffer C, Grbic A 2013 Phys. Rev. Lett. 110 197401
[18] Ni X, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M 2012 Science 335 427
[19] Yu N, Aieta F, Genevet P, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 6328
[20] Liu L, Zhang X, Kenney M, Su X, Xu N, Ouyang C, Shi Y, Han J, Zhang W, Zhang S 2014 Adv. Mater. 26 5031
[21] Kang M, Guo Q, Chen J, Gu B, Li Y, Wang H 2011 Phys. Rev. A 84 045803
[22] Kang M, Chen J, Wang X, Wang H 2012 J. Opt. Soc. Am. B 29 572
[23] Lin J, Wang Q, Yuan G, Du L, Kou S S, Yuan X 2015 Sci. Rep. 5 10529
[24] Yi X, Ling X, Zhang Z, Li Y, Zhou X, Liu Y, Chen S, Luo H, Wen S 2014 Opt. Express 22 17207
[25] Beresna M, Gecevičius M, Kazansky P G, Gertus T 2011 Appl. Phys. Lett. 98 201101
[26] Liu Y, Ling X, Yi X, Zhou X, Luo H, Wen S 2014 Appl. Phys. Lett. 104 191110
[27] Yi X, Liu Y, Ling X, Zhou X, Ke Y, Luo H, Wen S, Fan D 2015 Phys. Rev. A 91 023801
[28] Courtial J 1999 Opt. Commun. 171 179
-
[1] Bouchal Z, Wagner J, Chlup M 1998 Opt. Commun. 151 207
[2] Durnin J, Miceli J J, Eberly J H 1987 Phys. Rev. Lett. 58 1499
[3] McGloin D, Dholakia K 2005 Contemp. Phys. 46 15
[4] Zhao L, Wang F, Jiang L, Lu Y, Zhao W, Xie J, Li X 2015 Chin. Opt. Lett. 13 041405
[5] Cai Y, Lv X 2007 Opt. Commun. 274 1
[6] Chen B, Pu J 2009 Chin. Phys. B 18 1033
[7] Scott G, McArdle N 1992 Opt. Eng. 31 2640
[8] Sun Q, Zhou K, Fang G, Liu Z, Liu S 2012 Chin. Phys. B 21 014208
[9] Wu F, Chen Y, Guo D 2007 Appl. Opt. 46 4943
[10] Turuenen J, Vasara A, Friberg A T 1988 Appl. Opt. 27 3959
[11] Sochacki J, Kolodziejczyk A, Jaroszewicz Z, Bara S 1992 Appl. Opt. 31 5326
[12] Zheng W T, Wu F T, Zhang Q A, Cheng Z M 2012 Acta Phys. Sin. 61 144201 (in Chinese)[郑维涛, 吴逢铁, 张前安, 程治明 2012 61 144201]
[13] Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1232009
[14] Li X, Pu M, Zhao Z, Ma X, Jin J, Wang Y, Gao P, Luo X 2016 Sci. Rep. 6 20524
[15] Ke Y, Liu Y, Zhou J, Liu Y, Luo H, Wen S 2016 Appl. Phys. Lett. 108 101102
[16] Bomzon Z, Biener G, Kleiner V, Hasman E 2001 Opt. Lett. 26 33
[17] Pfeiffer C, Grbic A 2013 Phys. Rev. Lett. 110 197401
[18] Ni X, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M 2012 Science 335 427
[19] Yu N, Aieta F, Genevet P, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 6328
[20] Liu L, Zhang X, Kenney M, Su X, Xu N, Ouyang C, Shi Y, Han J, Zhang W, Zhang S 2014 Adv. Mater. 26 5031
[21] Kang M, Guo Q, Chen J, Gu B, Li Y, Wang H 2011 Phys. Rev. A 84 045803
[22] Kang M, Chen J, Wang X, Wang H 2012 J. Opt. Soc. Am. B 29 572
[23] Lin J, Wang Q, Yuan G, Du L, Kou S S, Yuan X 2015 Sci. Rep. 5 10529
[24] Yi X, Ling X, Zhang Z, Li Y, Zhou X, Liu Y, Chen S, Luo H, Wen S 2014 Opt. Express 22 17207
[25] Beresna M, Gecevičius M, Kazansky P G, Gertus T 2011 Appl. Phys. Lett. 98 201101
[26] Liu Y, Ling X, Yi X, Zhou X, Luo H, Wen S 2014 Appl. Phys. Lett. 104 191110
[27] Yi X, Liu Y, Ling X, Zhou X, Ke Y, Luo H, Wen S, Fan D 2015 Phys. Rev. A 91 023801
[28] Courtial J 1999 Opt. Commun. 171 179
计量
- 文章访问数: 9837
- PDF下载量: 721
- 被引次数: 0