搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Pancharatnam-Berry相位超表面的二维光学边缘检测

谢智强 贺炎亮 王佩佩 苏明样 陈学钰 杨博 刘俊敏 周新星 李瑛 陈书青 范滇元

引用本文:
Citation:

基于Pancharatnam-Berry相位超表面的二维光学边缘检测

谢智强, 贺炎亮, 王佩佩, 苏明样, 陈学钰, 杨博, 刘俊敏, 周新星, 李瑛, 陈书青, 范滇元

Two-dimensional optical edge detection based on Pancharatnam-Berry phase metasurface

Xie Zhi-Qiang, He Yan-Liang, Wang Pei-Pei, Su Ming-Yang, Chen Xue-Yu, Yang Bo, Liu Jun-Min, Zhou Xin-Xing, Li Ying, Chen Shu-Qing, Fan Dian-Yuan
PDF
HTML
导出引用
  • 提出并设计一种基于Pancharatnam-Berry (P-B)相位超表面的二维光学微分器, 并实现对光学图像的二维光学边缘检测. 在环形光栅相位的作用下, 该P-B相位超表面可将光束的左右旋分量在径向进行分离, 在滤除中间重叠部分的线偏振光后, 保留下来的光学信息即为二维光学微分结果. 同时, 通过调节该二维光学微分器的光轴分布函数可对边缘信息分辨率进行灵活调控. 研究结果表明, 上述P-B相位超表面可用于光学图像的二维边缘信息提取, 相比于一维光栅式超表面, 该方法得到的边缘信息更加完整、清晰. 可以预期, 这种二维光学微分器在超快光学计算与光学图像处理等方面具有重要的潜在应用价值.
    With the rapid development of metasurface and metamaterials, the image edge detection based on the optical spatial differential calculation becomes an interesting topic in recent years. There have been a certain number of studies in this region, but most of them are applicable only to one-dimensional optical spatial differential calculation. In this work, a two-dimensional optical differentiator using Pancharatnam-Berry (P-B) phase metasurface is proposed and implemented in optical image two-dimensional edge detection. Based on the principle of the spin-dependent splitting from P-B phase devices, this metasurface is capable of separating the left-handed circularly polarized light from the right-handed circularly polarized light at a certain spatial distance. After filtering out the overlapped linear polarization, the left optical information is the result of the two-dimensional optical spatial differential. Meanwhile, the resolution of the image edge information is adjustable by changing the optic axis distribution of this two-dimensional optical differentiator. These results indicate that our P-B phase metasurface can be applied to the extraction of the optical image two-dimensional edge information, and the extracted edge information is more complete than the previous one-dimensional grating metasurface. For these advantages, this two-dimensional optical differentiator shows great potential applications in ultrafast optical calculation and image processing.
      通信作者: 陈书青, shuqingchen@szu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61805149, 61575127)、广东自然科学基金(批准号: 2016A030310065)、广东省教育委员会(批准号: 2016KCXTD006)、深圳市科技计划基础研究项目(批准号: JCYJ20180507182035270)、深圳市科技项目(批准号: ZDSYS201707271014468)和深圳大学二维材料光电科技国际合作联合实验室基金(批准号: 2DMOST2018003)资助的课题
      Corresponding author: Chen Shu-Qing, shuqingchen@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61805149, 61575127), the Natural Science Foundation of Guangdong Province, China (Grant No. 2016A030310065), the Educational Commission of Guangdong Province, China (Grant No. 2016KCXTD006), the Program of Fundamental Research of Shenzhen Science and Technology Plan (Grant No. JCYJ20180507182035270), the Science and Technology Project of Shenzhen, China (Grant No. ZDSYS201707271014468), and the Fund of the International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Shenzhen University, China (Grant No. 2DMOST2018003)
    [1]

    Hubel D H, Wiesel T N 1962 J. Physiol 160 106Google Scholar

    [2]

    Farmahini-Farahani M, Cheng J, Mosallaei H 2013 J. Opt. Soc. Am. B 30 2365Google Scholar

    [3]

    Zhu T F, Lou Y J, Zhou Y H, Zhang J H, Huang J Y, Li Y, Luo H L, Wen S C, Zhu S Y, Gong Q H, Qiu M, Ruan Z C 2019 Phys. Rev. Appl. 11 034043Google Scholar

    [4]

    Silva A, Monticone F, Castaldi G, Galdi V, Alù A, Engheta N 2014 Science 343 160Google Scholar

    [5]

    Ruan Z C 2015 Opt. Lett. 40 601Google Scholar

    [6]

    Solli D R, Jalali B 2015 Nat. Photonics 9 704Google Scholar

    [7]

    Liu F F, Wang T, Qiang L, Ye T, Zhang Z Y, Qiu M, Su Y K 2008 Opt. Express 16 15800

    [8]

    Slavík R, Park Y, Ayotte N, Doucet S, Ahn T, LaRochelle S, Azaña J 2008 Opt. Express 16 18202Google Scholar

    [9]

    Yang T, Dong J, Lu L, Zhou L, Zheng A, Zhang X, Chen J 2014 Sci. Rep. 4 5581

    [10]

    Ruan Z C, Wu H, Qiu M, Fan S H 2014 Opt. Lett. 39 3587Google Scholar

    [11]

    Saba A, Tavakol M R, Karimi-Khoozani P, Khavasi A 2018 IEEE Photonics Technol. Lett. 30 853Google Scholar

    [12]

    Pors A, Nielsen M G, Bozhevolnyi S I 2015 Nano Lett. 15 791Google Scholar

    [13]

    Doskolovich L L, Bykov D A, Bezus E A, Soifer V A 2014 Opt. Lett. 39 1278Google Scholar

    [14]

    Zhu T F, Zhou Y H, Lou Y J, Ye H, Qiu M, Ruan Z C, Fan S H 2017 Nat. Commun. 8 15391Google Scholar

    [15]

    Zhou J X, Qian H L, Chen C F, Zhao J X, Li G R, Wu Q Y, Luo H L, Wen S C, Liu Z W 2019 P. Natl. Acad. Sci. USA 116 11137Google Scholar

    [16]

    Bykov D A, Doskolovich L L, Bezus E A, Soifer V A 2014 Opt. Express 22 25084Google Scholar

    [17]

    程杨, 姚佰承, 吴宇, 王泽高, 龚元, 饶云江 2013 62 237805Google Scholar

    Cheng Y, Yao B C, Wu Y, Wang Z G, Gong Y, Rao Y J 2013 Acta Phys. Sin. 62 237805Google Scholar

    [18]

    李鑫, 吴立祥, 杨元杰 2019 68 187103Google Scholar

    Li X, Wu L X, Yang Y J 2019 Acta Phys. Sin. 68 187103Google Scholar

    [19]

    郭文龙, 王光明, 李海鹏, 侯海生 2016 65 074101Google Scholar

    Guo W L, Wang G M, Li H P, Hou H S 2016 Acta Phys. Sin. 65 074101Google Scholar

    [20]

    余观夏, 付晶晶, 杜文文, 吕一航, 骆敏 2019 中国物理B 28 024101

    Yu G X, Fu J J, Du W W, Lü Y H, Luo M 2019 Chinese Phys. B 28 024101

    [21]

    Marrucci L, Manzo C, Paparo, D 2006 Phys. Rev. Lett. 96 163905Google Scholar

    [22]

    Biener G, Niv A, Kleiner V, Hasman E 2002 Opt. Lett. 27 1875Google Scholar

    [23]

    Luo W, Xiao S, He Q, Sun S, Zhou L 2015 Adv. Opt. Mater. 3 1102Google Scholar

    [24]

    Shitrit N, Bretner I, Gorodetski Y, Kleiner V, Hasman E 2011 Nano Lett. 11 2038Google Scholar

    [25]

    Yin X B, Ye Z L, 1 Rho J, Wang Y, Zhang X 2013 Science 339 1405Google Scholar

    [26]

    Luo X G, Pu M B, Li X, Ma X L 2017 Light Sci. Appl. 6 e16276Google Scholar

    [27]

    Declin R C, Khorasaninejad M, Chen W T, Oh J, Capasso F 2016 P. Natl. Acad. Sci. USA 113 10473Google Scholar

    [28]

    Declin R C, Ambrosio A, Rubin N A, Mueller J P B, Capasso F 2017 Science 358 896Google Scholar

    [29]

    Bomzon Z, Biener G, Kleiner V, Hasman E 2002 Opt. Lett. 27 1141Google Scholar

  • 图 1  (a)单元结构示意图; (b)与(c) xy方向线偏振入射光相位响应与介质柱长(l)、宽(w)之间的关系; (d) xy方向上的相位差随lw变化关系; (e)介质柱的旋转角与附加相位关系图.

    Fig. 1.  (a) Schematic for basic unit structure; (b) and (c) phase response of different length (l) and width (w) of the dielectric column under x- and y- LP incident beams; (d) phase difference between the x- and y-polarized light for different length (l) and width (w) of the dielectric column; (e) relationship between the rotation angle of the dielectric column and the additional phase.

    图 2  (a)光学二维边缘检测原理图; (b) LHCP与RHCP通过PB相位超表面后获得的相位梯度变化; (c) P-B相位超表面示意图; (d)和(e) RHCP与LHCP平面波通过超表面后波前变化图

    Fig. 2.  (a) Schematic diagram of the 2D optical edge detection; (b) phase gradient of the LHCP and RHCP component after the P-B phase matesurface; (c) diagram of the metasurface; (d) and (e) wavefront changes of RHCP and LHCP plane waves through the metasurface.

    图 3  (a) 深圳大学校徽掩模板; (b)−(d)周期T = 4 mm, 2 mm, 1 mm时, 一维边缘检测效果; (e)−(g)周期T = 4 mm, 2 mm, 1 mm时二维边缘检测效果

    Fig. 3.  (a) The mask used in the simulation; (b)−(d) the result of 1D edge extraction when the period T = 4 mm, 2 mm, 1 mm; (e)−(g) the result of 2D edge extraction when the period T = 4 mm, 2 mm, 1 mm.

    图 4  (a)形状不同的正方形掩膜板; (b)−(d)超表面的快轴分布以及LHCP通过超表面后的相位分布; (e)−(g)不同光轴分布的超表面实现边缘提取效果; (h)−(j)经过传输距离为0.1 m后LHCP和RHCP的相位差分布

    Fig. 4.  (a) Mask patterns of different squre; (b)−(d) metasurface fast-axis distributions and phase distributions of LHCP after metasurface; (e)−(g) results of the edge extraction with different Metasurface fast-axis distributions; (h)−(j) phase difference distributions of LHCP and RHCP at 0.1 m transmission distance.

    图 5  幂指数不同的光轴分布函数分别在xy方向上的空间传递函数

    Fig. 5.  Spatial spectral transfer function of the optical axis distribution functions with different power exponent in the x- and y- direction respectively.

    Baidu
  • [1]

    Hubel D H, Wiesel T N 1962 J. Physiol 160 106Google Scholar

    [2]

    Farmahini-Farahani M, Cheng J, Mosallaei H 2013 J. Opt. Soc. Am. B 30 2365Google Scholar

    [3]

    Zhu T F, Lou Y J, Zhou Y H, Zhang J H, Huang J Y, Li Y, Luo H L, Wen S C, Zhu S Y, Gong Q H, Qiu M, Ruan Z C 2019 Phys. Rev. Appl. 11 034043Google Scholar

    [4]

    Silva A, Monticone F, Castaldi G, Galdi V, Alù A, Engheta N 2014 Science 343 160Google Scholar

    [5]

    Ruan Z C 2015 Opt. Lett. 40 601Google Scholar

    [6]

    Solli D R, Jalali B 2015 Nat. Photonics 9 704Google Scholar

    [7]

    Liu F F, Wang T, Qiang L, Ye T, Zhang Z Y, Qiu M, Su Y K 2008 Opt. Express 16 15800

    [8]

    Slavík R, Park Y, Ayotte N, Doucet S, Ahn T, LaRochelle S, Azaña J 2008 Opt. Express 16 18202Google Scholar

    [9]

    Yang T, Dong J, Lu L, Zhou L, Zheng A, Zhang X, Chen J 2014 Sci. Rep. 4 5581

    [10]

    Ruan Z C, Wu H, Qiu M, Fan S H 2014 Opt. Lett. 39 3587Google Scholar

    [11]

    Saba A, Tavakol M R, Karimi-Khoozani P, Khavasi A 2018 IEEE Photonics Technol. Lett. 30 853Google Scholar

    [12]

    Pors A, Nielsen M G, Bozhevolnyi S I 2015 Nano Lett. 15 791Google Scholar

    [13]

    Doskolovich L L, Bykov D A, Bezus E A, Soifer V A 2014 Opt. Lett. 39 1278Google Scholar

    [14]

    Zhu T F, Zhou Y H, Lou Y J, Ye H, Qiu M, Ruan Z C, Fan S H 2017 Nat. Commun. 8 15391Google Scholar

    [15]

    Zhou J X, Qian H L, Chen C F, Zhao J X, Li G R, Wu Q Y, Luo H L, Wen S C, Liu Z W 2019 P. Natl. Acad. Sci. USA 116 11137Google Scholar

    [16]

    Bykov D A, Doskolovich L L, Bezus E A, Soifer V A 2014 Opt. Express 22 25084Google Scholar

    [17]

    程杨, 姚佰承, 吴宇, 王泽高, 龚元, 饶云江 2013 62 237805Google Scholar

    Cheng Y, Yao B C, Wu Y, Wang Z G, Gong Y, Rao Y J 2013 Acta Phys. Sin. 62 237805Google Scholar

    [18]

    李鑫, 吴立祥, 杨元杰 2019 68 187103Google Scholar

    Li X, Wu L X, Yang Y J 2019 Acta Phys. Sin. 68 187103Google Scholar

    [19]

    郭文龙, 王光明, 李海鹏, 侯海生 2016 65 074101Google Scholar

    Guo W L, Wang G M, Li H P, Hou H S 2016 Acta Phys. Sin. 65 074101Google Scholar

    [20]

    余观夏, 付晶晶, 杜文文, 吕一航, 骆敏 2019 中国物理B 28 024101

    Yu G X, Fu J J, Du W W, Lü Y H, Luo M 2019 Chinese Phys. B 28 024101

    [21]

    Marrucci L, Manzo C, Paparo, D 2006 Phys. Rev. Lett. 96 163905Google Scholar

    [22]

    Biener G, Niv A, Kleiner V, Hasman E 2002 Opt. Lett. 27 1875Google Scholar

    [23]

    Luo W, Xiao S, He Q, Sun S, Zhou L 2015 Adv. Opt. Mater. 3 1102Google Scholar

    [24]

    Shitrit N, Bretner I, Gorodetski Y, Kleiner V, Hasman E 2011 Nano Lett. 11 2038Google Scholar

    [25]

    Yin X B, Ye Z L, 1 Rho J, Wang Y, Zhang X 2013 Science 339 1405Google Scholar

    [26]

    Luo X G, Pu M B, Li X, Ma X L 2017 Light Sci. Appl. 6 e16276Google Scholar

    [27]

    Declin R C, Khorasaninejad M, Chen W T, Oh J, Capasso F 2016 P. Natl. Acad. Sci. USA 113 10473Google Scholar

    [28]

    Declin R C, Ambrosio A, Rubin N A, Mueller J P B, Capasso F 2017 Science 358 896Google Scholar

    [29]

    Bomzon Z, Biener G, Kleiner V, Hasman E 2002 Opt. Lett. 27 1141Google Scholar

  • [1] 李乾阳, 袁帅杰, 杨锦, 王勇, 马祖海, 陈宇, 周新星. 块状和超薄磁性材料中巨大且可调控的面内自旋角位移.  , 2023, 72(1): 014201. doi: 10.7498/aps.72.20221643
    [2] 姜在超, 宫正, 钟芸襄, 崔彬, 邹斌, 杨玉平. 基于几何相位的太赫兹编码超表面反射器研制与测试.  , 2023, 72(24): 248707. doi: 10.7498/aps.72.20230989
    [3] 黄晓俊, 高焕焕, 何嘉豪, 栾苏珍, 杨河林. 动态可调谐的频域多功能可重构极化转换超表面.  , 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [4] 范辉颖, 罗杰. 非厄密电磁超表面研究进展.  , 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [5] 李乾阳, 袁帅杰, 杨锦, 王勇, 马祖海, 陈宇, 周新星. 块状和超薄磁性材料中巨大且可调控的面内自旋角位移.  , 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221643
    [6] 孙胜, 阳棂均, 沙威. 基于反射超表面的偏馈式涡旋波产生装置.  , 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681
    [7] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器.  , 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [8] 高喜, 唐李光. 基于双层超表面的宽带、高效透射型轨道角动量发生器.  , 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [9] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用.  , 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [10] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控.  , 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [11] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束.  , 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [12] 刘金安, 涂佳隆, 卢志利, 吴柏威, 胡琦, 马洪华, 陈欢, 易煦农. 基于Pancharatnam-Berry相位和动力学相位调控纵向光子自旋霍尔效应.  , 2019, 68(6): 064201. doi: 10.7498/aps.68.20182004
    [13] 万婷, 罗朝明, 闵力, 陈敏, 肖磊. 基于合金介电常数的可控特性增强光子自旋霍尔效应.  , 2018, 67(6): 064201. doi: 10.7498/aps.67.20171824
    [14] 陈欢, 凌晓辉, 何武光, 李钱光, 易煦农. 基于Pancharatnam-Berry相位调控产生贝塞尔光束.  , 2017, 66(4): 044203. doi: 10.7498/aps.66.044203
    [15] 郭文龙, 王光明, 李海鹏, 侯海生. 单层超薄高效圆极化超表面透镜.  , 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [16] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 圆极化波反射聚焦超表面.  , 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [17] 王莉岑, 邱晓东, 张志友, 石瑞英. 磁光克尔效应中的光子自旋分裂.  , 2015, 64(17): 174202. doi: 10.7498/aps.64.174202
    [18] 吴晨骏, 程用志, 王文颖, 何博, 龚荣洲. 基于十字形结构的相位梯度超表面设计与雷达散射截面缩减验证.  , 2015, 64(16): 164102. doi: 10.7498/aps.64.164102
    [19] 范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学. 基于交叉极化旋转相位梯度超表面的宽带异常反射.  , 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [20] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证.  , 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
计量
  • 文章访问数:  15452
  • PDF下载量:  505
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-04
  • 修回日期:  2019-10-16
  • 上网日期:  2019-12-13
  • 刊出日期:  2020-01-05

/

返回文章
返回
Baidu
map