Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of single-atom Pt adsorption on BiOBr{001} surface with different atomic exposure terminations

Zhang Xiao-Chao Guan Mei-Hua Zhang Qi-Rui Zhang Chang-Ming Li Rui Liu Jian-Xin Wang Ya-Wen Fan Cai-Mei

Citation:

First-principles study of single-atom Pt adsorption on BiOBr{001} surface with different atomic exposure terminations

Zhang Xiao-Chao, Guan Mei-Hua, Zhang Qi-Rui, Zhang Chang-Ming, Li Rui, Liu Jian-Xin, Wang Ya-Wen, Fan Cai-Mei
PDF
HTML
Get Citation
  • In this work, the geometrical configuration, electronic structure, optical properties and charge transfer behavior of BiOBr{001} surface with three different atomic exposure terminations (-BiO, -1Br and -2Br) and single-atom Pt at different adsorption positions on the BiOBr{001}-BiO surface (top, bridge and hollow site) are calculated by the first-principles calculation method based on density functional theory (DFT). More emphasis is placed on the research of the relative rule between single-atom Pt and BiOBr{001} surface. The calculation results show that the BiOBr{001}-BiO system exhibits the appearance of surface energy levels and the shift towards the lower energy for valence band and conduction band, enhancing the photocatalytic oxidation performance, especially, the existence of surface energy levels below the conduction band will contribute to the separation and migration of electron-hole pairs and the significant improvement of photo-response capability. Besides, the work function of BiOBr{001}-BiO system is much lower than one of noble metal Pt, which is beneficial to the directional transfer of photogenerated charge. Therefore, the BiOBr{001}-BiO system should be selected as an ideal substrate for interaction with the noble metal Pt. Furthermore, single-atom Pt is adsorbed at different positions of BiOBr{001}-BiO surface, with induced impurity energy levels in the forbidden band, achieving the smallest adsorption energy, the best photo-response capability. Particularly, the transferred charge number is the largest value (–0.920e) when Pt atom is adsorbed on a hollow site. However, the open electron-poor region will be formed when Pt atom is adsorbed at the top and bridge sites of BiOBr{001}-BiO surface. What is more, our findings should provide the excellent theoretical guidance for achieving the photocatalytic CO2 reduction and nitrogen fixation on the BiOBr{001} surface to build up the top and bridge sites as the adsorption sites of Pt atom. The adsorption sites of Pt atoms are located at the hollow sites of BiOBr{001} surface, which should obtain the high photocatalytic oxidizing activity of degrading organic pollutants. Finally, our work can not only present the basic data for the optimized local electronic structure and photocatalytic application for noble metal decorated BiOBr-based materials, but also provide a kind of research strategy for further exploring and designing efficient noble metal decorated BiOX-based or other semiconductor-based photocatalyst systems.
      Corresponding author: Zhang Xiao-Chao, zhangxiaochao@tyut.edu.cn ; Fan Cai-Mei, fancm@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21978196, 21676178, 21706179), the Shanxi Provincial Science Foundation for Excellent Young Scholars, China (Grant No. 201801D211008), and the Scientific and Technological Innovation Program of Higher Education Institutions of Shanxi Province, China (Grant No. 201802051)
    [1]

    Li X B, Xiong J, Gao X M, Ma J, Huang J T 2019 J. Hazard. Mater. 387 121690

    [2]

    Li J Y, Dong X A, Sun Y J, Cen W L, Dong F 2018 Appl. Catal. B: Environ. 226 269Google Scholar

    [3]

    Huo Y N, Zhang J, Miao M, Jin Y 2012 Appl. Catal. B: Environ. 111-112 334

    [4]

    Gao Q, Wu X, Zhu R 2020 Constr. Build. Mater. 257 119569Google Scholar

    [5]

    Yang Y, Zhang C, Lai C, Zeng G M, Huang D L, Cheng M, Wang J J, Chen F, Zhou C Y, Xiong W P 2018 Adv Colloid Interface Sci. 254 76Google Scholar

    [6]

    Li T, Zhang X C, Zhang C M, Li R, Liu J X, Lv R, Zhang H, Han P D, Fan C M, Zheng Z F 2019 Phys. Chem. Chem. Phys. 21 868Google Scholar

    [7]

    Ye L Q, Su Y R, Jin X L, Xie H Q, Zhang C 2014 Environ. Sci.: Nano 1 90Google Scholar

    [8]

    Bai S, Li X, Kong Q, Long R, Wang C, Jiang J, Xiong Y 2015 Adv. Mater. 27 3444Google Scholar

    [9]

    Xu B R, Li J, Liu L, Li Y D, Guo S H, Gao Y Q, Li N, Ge L 2019 Chin. J. Catal. 40 713Google Scholar

    [10]

    Chen Y, Wang Y, Li W, Yang Q, Hou Q, Wei L, Liu L, Huang F, Ju M 2017 Appl. Catal. B: Environ. 210 352Google Scholar

    [11]

    Qiao B, Wang A, Yang X, Allard L F, Jiang Z, Cui Y, Liu J, Li J, Zhang T 2011 Nat. Chem. 3 634Google Scholar

    [12]

    Wan J, Chen W, Jia C, Zheng L, Dong J, Zheng X, Wang Y, Yan W, Chen C, Peng Q, Wang D, Li Y 2018 Adv. Mater. 30 1705369Google Scholar

    [13]

    Li X, Bi W, Zhang L, Tao S, Chu W, Zhang Q, Luo Y, Wu C, Xie Y 2016 Adv. Mater. 28 2427Google Scholar

    [14]

    Nie L, Mei D H, Xiong H F, Peng B, Ren Z B, Hernandez X I P, Delariva A, Wang M, Engelhard M H, Kovarik L 2017 Science 358 1419Google Scholar

    [15]

    Shi Y, Zhao C, Wei H, Guo J, Liang S, Wang A, Zhang T, Liu J, Ma T 2014 Adv. Mater. 26 8147Google Scholar

    [16]

    Zhang H B, Liu G G, Shi L, Ye J H 2018 Adv. Energy Mater. 8 1701343Google Scholar

    [17]

    Liu H, Fang Z, Su Y, Suo Y, Huang S, Zhang Y, Ding K 2018 Chem. Asian. J. 13 799Google Scholar

    [18]

    Zhang X C, Li G Q, Fan C M, Ding G Y, Wang Y W, Han P D 2014 Comput. Mater. Sci. 95 113Google Scholar

    [19]

    Li H, Shang J, Ai Z, Zhang L 2015 J. Am. Chem. Soc. 137 6393Google Scholar

    [20]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [21]

    Pfrommer B G, Cote M, Louie S G, Cohen M L 1997 J. Comput. Phys. 131 233Google Scholar

    [22]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [23]

    Zhao Z Y, Dai W W 2014 Inorg. Chem. 53 13001Google Scholar

    [24]

    T T, C Z B, Jia J C, Bei C, Guo Y J 2018 Appl. Surf. Sci. 433 1175Google Scholar

    [25]

    Huang W L, Zhu Q S 2009 J. Comput. Chem. 30 183Google Scholar

    [26]

    Bhachu D S, Moniz S J A, Sathasivam S, Scanlon D O, Walsh A, Bawaked S M, Mokhtar M, Obaid A Y, Parkin I P, Tang J, Carmalt C J 2016 Chem. Sci. 7 4832Google Scholar

    [27]

    Ye L Q, Jin X L, Liu C, Ding C H, Xie H Q, Chu K H, Wong P K 2016 Appl. Catal. B: Environ. 187 281Google Scholar

    [28]

    Guo J Q, Liao X, Lee M H, Hyett G, Huang C C, Hewak D W, Mailis S, Zhou W, Jiang Z 2019 Appl. Catal. B: Environ. 243 502Google Scholar

    [29]

    Zhang X C, Guo T Y, Wang X W, Wang Y W, Fan C M, Zhang H 2014 Appl. Catal. B: Environ. 150-151 486Google Scholar

    [30]

    Liu L P, Zhuang Z B, Xie T, Wang Y G, Li J, Peng Q, Li Y D 2009 J. Am. Chem. Soc. 131 16423Google Scholar

    [31]

    Zhao K, Zhang L, Wang J, Li Q, He W, Yin J J 2013 J. Am. Chem. Soc. 135 15750Google Scholar

    [32]

    Kong T, Wei X M, Zhu G Q, Huang Y H 2017 J. Mater. Sci. 52 5686Google Scholar

    [33]

    Zhang H J, Liu L, Zhou Z 2012 RSC Adv. 2 9224Google Scholar

    [34]

    Ma Z Y, Li P H, Ye L Q, Wang L, Xie H Q, Zhou Y 2018 Catal. Sci. Technol. 8 5129Google Scholar

    [35]

    Zhang Z, Wang Y F, Zhang X C, Zhang C M, Wang Y W, Zhang H, Fan C M 2018 Chem. Pap. –Chem. Zvesti 72 2413

    [36]

    Guo W, Qin Q, Geng L, Wang D, Guo Y, Yang Y 2016 J. Hazard. Mater. 308 374Google Scholar

    [37]

    Wu D P, Wang R, Yang C, An Y P, Lu H, Wang H J, Cao K, Gao Z Y, Zhang W C, Xu F, Jiang K 2019 J.Colloid Interface Sci. 556 111Google Scholar

  • 图 1  不同原子暴露终端BiOBr{001}面及单原子Pt吸附于BiOBr{001}-BiO不同位置的晶体结构模型 (a) -BiO; (b) -1Br; (c) -2Br; (d) TPt; (e) BPt; (f) HPt

    Figure 1.  The crystal structure model of BiOBr{001} surface with different atom exposure terminations and single atom Pt adsorbed on different positions of BiOBr{001}-BiO: (a) -BiO; (b) -1Br; (c) -2Br; (d) TPt; (e) BPt; (f) HPt.

    图 2  体相BiOBr的(a)能带结构以及(b)总态密度图和原子态密度图

    Figure 2.  (a) Band structure and (b) total density of states and projected density of states of bulk BiOBr.

    图 3  (a) BiOBr{001}-BiO, (b) BiOBr{001}-1Br和 (c) BiOBr{001}-2Br结构优化后的俯视图

    Figure 3.  The optimized top view of (a) BiOBr{001}-BiO, (b) BiOBr{001}-1Br, and (c) BiOBr{001}-2Br.

    图 4  不同原子暴露终端BiOBr{001}面的能带结构和态密度图 (a), (b) -BiO; (c), (d) -1Br; (e), (f) -2Br

    Figure 4.  The band structures and density of states of BiOBr{001} surface with different atom exposure terminations: (a), (b) -BiO; (c), (d) -1Br; (e), (f) -2Br.

    图 5  不同原子暴露端的BiOBr{001}表面的光学吸收谱图

    Figure 5.  The optical absorption spectrum of the BiOBr{001} surface with different atom exposure terminals.

    图 6  不同原子暴露端BiOBr{001}表面的差分电荷密度图 (a) -BiO; (b) -1Br; (c) -2Br

    Figure 6.  The difference charge density of the BiOBr{001} surface with different atom exposure terminals: (a) -BiO; (b) -1Br; (c) -2Br.

    图 7  单原子Pt在BiOBr{001}-BiO面不同吸附位置的能带结构和态密度图 (a), (b) TPt; (c), (d) BPt; (e), (f) HPt

    Figure 7.  The band structure and density of states of single-atom Pt at different adsorption positions on BiOBr{001}- BiO surface: (a), (b) TPt; (c), (d) BPt; (e), (f) HPt.

    图 8  单原子Pt在BiOBr{001}-BiO面不同吸附位置的光学吸收谱图

    Figure 8.  The optical absorption spectrum of single-atom Pt at different adsorption positions on BiOBr{001}-BiO surface

    图 9  单原子Pt在BiOBr{001}-BiO面不同吸附位置的差分电荷密度图 (a) TPt; (b) BPt; (c) HPt

    Figure 9.  The differential charge density of single-atom Pt at different adsorption positions on BiOBr{001}-BiO surface: (a) TPt; (b) BPt; (c) HPt.

    图 10  Pt/BiOBr{001}-BiO光催化剂体系的电子转移机理

    Figure 10.  Possible electron transfer mechanism of Pt/BiOBr{001}-BiO photocatalyst system.

    表 1  不同原子暴露终端BiOBr{001}面的表面能和电子性质计算结果

    Table 1.  The calculation results of the surface energy and electronic properties of the BiOBr{001} surface with different atom exposure terminations.

    SurfaceEsurf/(J·m–2)Erel/(J·m–2)Esurf /(J·m–2) [16]W/eVVBMCBMEg/eVSEL
    {001}-BiO2.244–0.1372.2—2.42.576G –2.020G-F –1.1420.878–1.142—0.126
    {001}-1Br0.005–0.002–0.2—0.37.203G-F 0G 2.3972.397–3.825—0
    {001}-2Br2.142–0.0252.2—2.57.566G-F 0G 2.2172.2170.011—0.128
    DownLoad: CSV

    表 2  单原子Pt在BiOBr{001}-BiO面不同吸附位置的吸附能、功函数和电子性质的计算结果

    Table 2.  The calculation results of the adsorption energy, work function, and electronic properties of single-atom Pt at different adsorption positions on BiOBr{001}-BiO surface.

    SitesEads /(J·m–2)Pt-Bi length/ÅVBMCBMEg/eVPt 5d statesSEL
    T–5.1892.612G-F –2.379G –0.7451.634–2.307— –1.497–0.745—0.063
    B–5.4272.568F –2.045G –0.7411.634–1.688 — –1.609–0.741—0.517
    H–6.0872.831G F –2.101G –0.7461.356–2.051 — –1.777–0.746—-0.013
    DownLoad: CSV

    表 3  Pt/BiOBr{001}-BiO体系的功函数W和Mulliken电荷变化值 ∆Q

    Table 3.  Work function W and Mulliken charge change value ∆Q of Pt/BiOBr{001}-BiO.

    SystemsPtBiOBr{001}-BiOTPt/BiOBr{001}-BiOBPt/BiOBr{001}-BiOHPt/BiOBr{001}-BiO
    Work function /eV5.6502.5763.3003.2543.001
    Pt Mulliken charge ∆Q /e–0.810–0.860–0.920
    DownLoad: CSV
    Baidu
  • [1]

    Li X B, Xiong J, Gao X M, Ma J, Huang J T 2019 J. Hazard. Mater. 387 121690

    [2]

    Li J Y, Dong X A, Sun Y J, Cen W L, Dong F 2018 Appl. Catal. B: Environ. 226 269Google Scholar

    [3]

    Huo Y N, Zhang J, Miao M, Jin Y 2012 Appl. Catal. B: Environ. 111-112 334

    [4]

    Gao Q, Wu X, Zhu R 2020 Constr. Build. Mater. 257 119569Google Scholar

    [5]

    Yang Y, Zhang C, Lai C, Zeng G M, Huang D L, Cheng M, Wang J J, Chen F, Zhou C Y, Xiong W P 2018 Adv Colloid Interface Sci. 254 76Google Scholar

    [6]

    Li T, Zhang X C, Zhang C M, Li R, Liu J X, Lv R, Zhang H, Han P D, Fan C M, Zheng Z F 2019 Phys. Chem. Chem. Phys. 21 868Google Scholar

    [7]

    Ye L Q, Su Y R, Jin X L, Xie H Q, Zhang C 2014 Environ. Sci.: Nano 1 90Google Scholar

    [8]

    Bai S, Li X, Kong Q, Long R, Wang C, Jiang J, Xiong Y 2015 Adv. Mater. 27 3444Google Scholar

    [9]

    Xu B R, Li J, Liu L, Li Y D, Guo S H, Gao Y Q, Li N, Ge L 2019 Chin. J. Catal. 40 713Google Scholar

    [10]

    Chen Y, Wang Y, Li W, Yang Q, Hou Q, Wei L, Liu L, Huang F, Ju M 2017 Appl. Catal. B: Environ. 210 352Google Scholar

    [11]

    Qiao B, Wang A, Yang X, Allard L F, Jiang Z, Cui Y, Liu J, Li J, Zhang T 2011 Nat. Chem. 3 634Google Scholar

    [12]

    Wan J, Chen W, Jia C, Zheng L, Dong J, Zheng X, Wang Y, Yan W, Chen C, Peng Q, Wang D, Li Y 2018 Adv. Mater. 30 1705369Google Scholar

    [13]

    Li X, Bi W, Zhang L, Tao S, Chu W, Zhang Q, Luo Y, Wu C, Xie Y 2016 Adv. Mater. 28 2427Google Scholar

    [14]

    Nie L, Mei D H, Xiong H F, Peng B, Ren Z B, Hernandez X I P, Delariva A, Wang M, Engelhard M H, Kovarik L 2017 Science 358 1419Google Scholar

    [15]

    Shi Y, Zhao C, Wei H, Guo J, Liang S, Wang A, Zhang T, Liu J, Ma T 2014 Adv. Mater. 26 8147Google Scholar

    [16]

    Zhang H B, Liu G G, Shi L, Ye J H 2018 Adv. Energy Mater. 8 1701343Google Scholar

    [17]

    Liu H, Fang Z, Su Y, Suo Y, Huang S, Zhang Y, Ding K 2018 Chem. Asian. J. 13 799Google Scholar

    [18]

    Zhang X C, Li G Q, Fan C M, Ding G Y, Wang Y W, Han P D 2014 Comput. Mater. Sci. 95 113Google Scholar

    [19]

    Li H, Shang J, Ai Z, Zhang L 2015 J. Am. Chem. Soc. 137 6393Google Scholar

    [20]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [21]

    Pfrommer B G, Cote M, Louie S G, Cohen M L 1997 J. Comput. Phys. 131 233Google Scholar

    [22]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [23]

    Zhao Z Y, Dai W W 2014 Inorg. Chem. 53 13001Google Scholar

    [24]

    T T, C Z B, Jia J C, Bei C, Guo Y J 2018 Appl. Surf. Sci. 433 1175Google Scholar

    [25]

    Huang W L, Zhu Q S 2009 J. Comput. Chem. 30 183Google Scholar

    [26]

    Bhachu D S, Moniz S J A, Sathasivam S, Scanlon D O, Walsh A, Bawaked S M, Mokhtar M, Obaid A Y, Parkin I P, Tang J, Carmalt C J 2016 Chem. Sci. 7 4832Google Scholar

    [27]

    Ye L Q, Jin X L, Liu C, Ding C H, Xie H Q, Chu K H, Wong P K 2016 Appl. Catal. B: Environ. 187 281Google Scholar

    [28]

    Guo J Q, Liao X, Lee M H, Hyett G, Huang C C, Hewak D W, Mailis S, Zhou W, Jiang Z 2019 Appl. Catal. B: Environ. 243 502Google Scholar

    [29]

    Zhang X C, Guo T Y, Wang X W, Wang Y W, Fan C M, Zhang H 2014 Appl. Catal. B: Environ. 150-151 486Google Scholar

    [30]

    Liu L P, Zhuang Z B, Xie T, Wang Y G, Li J, Peng Q, Li Y D 2009 J. Am. Chem. Soc. 131 16423Google Scholar

    [31]

    Zhao K, Zhang L, Wang J, Li Q, He W, Yin J J 2013 J. Am. Chem. Soc. 135 15750Google Scholar

    [32]

    Kong T, Wei X M, Zhu G Q, Huang Y H 2017 J. Mater. Sci. 52 5686Google Scholar

    [33]

    Zhang H J, Liu L, Zhou Z 2012 RSC Adv. 2 9224Google Scholar

    [34]

    Ma Z Y, Li P H, Ye L Q, Wang L, Xie H Q, Zhou Y 2018 Catal. Sci. Technol. 8 5129Google Scholar

    [35]

    Zhang Z, Wang Y F, Zhang X C, Zhang C M, Wang Y W, Zhang H, Fan C M 2018 Chem. Pap. –Chem. Zvesti 72 2413

    [36]

    Guo W, Qin Q, Geng L, Wang D, Guo Y, Yang Y 2016 J. Hazard. Mater. 308 374Google Scholar

    [37]

    Wu D P, Wang R, Yang C, An Y P, Lu H, Wang H J, Cao K, Gao Z Y, Zhang W C, Xu F, Jiang K 2019 J.Colloid Interface Sci. 556 111Google Scholar

  • [1] Zhou Jia-Jian, Zhang Yu-Wen, He Chao-Yu, Ouyang Tao, Li Jin, Tang Chao. First-principles study of structure prediction and electronic properties of two-dimensional SiP2 allotropes. Acta Physica Sinica, 2022, 71(23): 236101. doi: 10.7498/aps.71.20220853
    [2] Zhang Ying, Liu Chun-Sheng. Theoretical study of optical and electronic properties of silicether/graphether heterostructure. Acta Physica Sinica, 2021, 70(12): 123102. doi: 10.7498/aps.70.20202193
    [3] Qin Wen-Jing, Xu Bo, Sun Bao-Zhen, Liu Gang. First principles study of electrical and magnetic properties of two-dimensional ferromagnetic semiconductors CrI3 adsorbed by atoms. Acta Physica Sinica, 2021, 70(11): 117101. doi: 10.7498/aps.70.20210090
    [4] Hou Lu, Tong Xin, Ouyang Gang. First-principles study of atomic bond nature of one-dimensional carbyne chain under different strains. Acta Physica Sinica, 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [5] Zuo Bo-Min, Yuan Jian-Mei, Feng Zhi, Mao Yu-Liang. First-principles study of five isomers of two-dimensional GeSe under in-plane strain. Acta Physica Sinica, 2019, 68(11): 113103. doi: 10.7498/aps.68.20182266
    [6] Chen Lu, Li Ye-Fei, Zheng Qiao-Ling, Liu Qing-Kun, Gao Yi-Min, Li Bo, Zhou Chang-Meng. Theoretical study of atomic relaxation, surface energy, electronic structure and properties of B2- and B19'-NiTi surfaces. Acta Physica Sinica, 2019, 68(5): 053101. doi: 10.7498/aps.68.20181944
    [7] Liu Kun, Wang Fu-He, Shang Jia-Xiang. First-principles study on the adsorption of oxygen at NiTi (110) surface. Acta Physica Sinica, 2017, 66(21): 216801. doi: 10.7498/aps.66.216801
    [8] Liu Feng-Bin, Chen Wen-Bin, Cui Yan, Qu Min, Cao Lei-Gang, Yang Yue. A first principles study on the active adsorbates on the hydrogenated diamond surface. Acta Physica Sinica, 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [9] Chen Qing-Ling, Dai Zhen-Hong, Liu Zhao-Qing, An Yu-Feng, Liu Yue-Lin. First-principles study on the structure stability and doping performance of double layer h-BN/Graphene. Acta Physica Sinica, 2016, 65(13): 136101. doi: 10.7498/aps.65.136101
    [10] Liu Bo, Wang Xuan-Jun, Bu Xiao-Yu. First principles investigations of structural, electronic and elastic properties of ammonium perchlorate under high pressures. Acta Physica Sinica, 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [11] Huang Yan-Ping, Yuan Jian-Mei, Guo Gang, Mao Yu-Liang. First-principles study on saturated adsorption of alkali metal atoms on silicene. Acta Physica Sinica, 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [12] Xu Lei, Dai Zhen-Hong, Wang Sen, Liu Bing, Sun Yu-Ming, Wang Wei-Tian. First principles study of fluorinated boron-carbon sheets. Acta Physica Sinica, 2014, 63(10): 107102. doi: 10.7498/aps.63.107102
    [13] Feng Xiao-Qin, Jia Jian-Ming, Chen Gui-Bin. Electronic properties and modulation of structurally bent BN nanoribbon. Acta Physica Sinica, 2014, 63(3): 037101. doi: 10.7498/aps.63.037101
    [14] Zhang Yang, Huang Yan, Chen Xiao-Shuang, Lu Wei. The study of oxygen and sulfur adsorption on the InSb (110) surface, using first-principle energy calculations. Acta Physica Sinica, 2013, 62(20): 206102. doi: 10.7498/aps.62.206102
    [15] Meng Fan-Shun, Zhao Xing, Li Jiu-Hui. The first-principles study on properties of B-doped at interstitial site of Cu∑5 grain boundary. Acta Physica Sinica, 2013, 62(11): 117102. doi: 10.7498/aps.62.117102
    [16] Luo Qiang, Tang Bin, Zhang Zhi, Ran Zeng-Ling. First principles calculation of adsorption for H2S on Fe(100) surface. Acta Physica Sinica, 2013, 62(7): 077101. doi: 10.7498/aps.62.077101
    [17] Li Guo-Qi, Zhang Xiao-Chao, Ding Guang-Yue, Fan Cai-Mei, Liang Zhen-Hai, Han Pei-De. Study on the atomic and electronic structures of BiOCl{001} surface using first principles. Acta Physica Sinica, 2013, 62(12): 127301. doi: 10.7498/aps.62.127301
    [18] Li Qi, Fan Guang-Han, Xiong Wei-Ping, Zhang Yong. First-principles calculations of ZnO polar surfaces and N adsorption mechanism. Acta Physica Sinica, 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
    [19] Yang Chong, Yang Chun. First-principles study of atomic and electronic structures of the silicon oxide clusters on Si(001) surfaces. Acta Physica Sinica, 2009, 58(8): 5362-5369. doi: 10.7498/aps.58.5362
    [20] Ni Jian-Gang, Liu Nuo, Yang Guo-Lai, Zhang Xi. First-principle study on electronic structure of BaTiO3 (001) surfaces. Acta Physica Sinica, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
Metrics
  • Abstract views:  7577
  • PDF Downloads:  224
  • Cited By: 0
Publishing process
  • Received Date:  22 September 2020
  • Accepted Date:  23 November 2020
  • Available Online:  07 April 2021
  • Published Online:  20 April 2021

/

返回文章
返回
Baidu
map