Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study on the structure stability and doping performance of double layer h-BN/Graphene

Chen Qing-Ling Dai Zhen-Hong Liu Zhao-Qing An Yu-Feng Liu Yue-Lin

Citation:

First-principles study on the structure stability and doping performance of double layer h-BN/Graphene

Chen Qing-Ling, Dai Zhen-Hong, Liu Zhao-Qing, An Yu-Feng, Liu Yue-Lin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Using the firs-principles method based on density functional theory, we study the stability and doping performance of double h-BN/Graphene structure, here the exchange correlation potential is expressed through the local density approximation and the interactions between ions and electrons are described by the projective-augmented wave method. Because double layer h-BN/Graphene represents a kind of epitaxial semiconductor system, which can be applied to tunnel pressure sensor, the research is very meaningful. In order to improve the application of this special double layer structures, we often carry out the dopings of some atoms. Unlike previous research work, in which the dopings of the metals Au, Co, Mn and other atoms were took into account, we now mainly consider the dopings of the active metal atoms, such as the dopings of Li, Na, and K atoms. The band structure, electronic density of states, as well as the charge density and stability are studied on the double h-BN/Graphene structure after alkali metal doping. At the same time, bonding and electronic properties of double h-BN/Graphene are discussed under the different biaxial strain conditions. The results show that for the dopings of Li and K atoms, the structure deformation is very large, and the band structure of double h-BN/Graphene can show a small band gap at the K point in the first Brillouin zone, taking on a linear dispersion relation the same as that of the perfect graphene. We can tune the band gap by applying external strain and dopings of atoms, and find a new level appearing near the Fermi level after doping, which is mainly due to the contribution of N atoms. In addition, there exists charge transfer between Na atom and N and C atoms, and the material is converted into metal. We find obvious charge overlapping in the vicinity of Na atoms, these charge overlaps appearing around the Na and C atoms indicate the existence of covalent bond and this covalent bond also appears around the Na atoms and N atoms. We prove the existence of the chemical bonds by adopting the Bader charge analysis, which suggests that the C atoms in the lower graphene layer obtain 0.11 e and dopant atoms around the three N atoms obtain 0.68 e. We infer that the increasing of Na atom doping can increase the charge transfer, so the method of changing the substrate to increase the graphene layer charge density is very conducive to the application of graphene in electronic devices. Because the double h-BN/Graphene has been successfully synthesized, our calculations provide a theoretical basis for the further development and application of technology. We can expect that Na atom doped double h-BN/Graphene can be well applied to the future electronic devices.
      Corresponding author: Dai Zhen-Hong, zhdai@ytu.edu.cn.
    • Funds: Project supported by the New Century Excellent Talents in University in Ministry of Education of China (Grant No. NCET-09-0867).
    [1]

    Xu L, Dai Z H, Wang S, Liu B, Sun Y M, Wang W T 2014 Acta Phys. Sin. 63 107102 (in Chinese) [徐雷, 戴振宏, 王森, 刘兵, 孙玉明, 王伟田 2014 63 107102]

    [2]

    Xu L, Dai Z H, Sui P F, Wang W T, Sun Y M 2014 Acta Phys. Sin. 63 186101 (in Chinese) [徐雷, 戴振宏, 隋鹏飞, 王伟田, 孙玉明 2014 63 186101]

    [3]

    Dai Z H, Zhao Y C 2014 Appl. Surf. Sci. 305 382

    [4]

    Zhang Y, Hu C H, Wen Y H, Wu S Q, Zhu Z Z 2011 New J. Phys. 13 063047

    [5]

    Meyer J C, Chuvilin A, Algara-Siller G, Biskupek J, Kaiser U 2009 Nano Lett. 9 2683

    [6]

    Zhi C Y, Bando Y, Tang C C, Kuwahara H, Golberg D 2009 Adv. Mater. 21 2889

    [7]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722

    [8]

    Decker R, Wang Y, Brar V W, Regan W, Tsai H Z, Wu Q, Gannett W, Zettl A, Crommie M F 2011 Nano Lett. 11 2291

    [9]

    Kharche N, Nayak S K 2011 Nano Lett. 11 5274

    [10]

    Sachs B, Wehling T O, Katsnelson M I, Lichtenstein A I 2011 Phys. Rev. B 84 195414

    [11]

    Kindermann M, Uchoa B, Miller D L 2012 Phys. Rev. B 86 115415

    [12]

    Song J C W, Shytov A V, Levitov L S 2013 Phys. Rev. Lett. 111 266801

    [13]

    Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Harillo-Herrero P, Jacquod P, Leroy B J 2012 Nat. Phys. 8 382

    [14]

    Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598

    [15]

    Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 6139

    [16]

    Mucha-Kruczynski M, Wallbank J R, FalKo V I 2013 Phys. Rev. B 88 205418

    [17]

    Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Mucha-Kruczynski M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, FalKo V I, Geim A K 2013 Nature 497 594

    [18]

    Pikalov A A, Fil D V 2012 Nanoscale. Res. Lett. 7 145

    [19]

    Geim A K 2009 Science 324 1530

    [20]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [21]

    Weitz R T, Yacoby A 2010 Nat. Nanotechnol. 5 699

    [22]

    Peres N M R 2010 Rev. Mod. Phys. 82 2673

    [23]

    Sarma S D, Hwang E H 2011 Phys. Rev. B 83 121405

    [24]

    Giovannetti G, Khomyakov P A, Brocks G, Kelly P J, van den Brink J 2007 Phys. Rev. B 76 073103

    [25]

    Zhong X, Yap Y K, Pandey R, Karna S P 2011 Phys. Rev. B 83 193403

    [26]

    Fan Y, Zhao M, Wang Z, Zhang X, Zhang H 2011 Appl. Phys. Lett. 98 083103

    [27]

    Mao Y L, Xie Z Q, Yuan J M, Li S H, Wei Z, Zhong J X 2013 Physica E 49 111

    [28]

    Hashmi A, Hong J S 2014 J. Magn. Magn. Mater. 355 7

    [29]

    Li S H, Yuan J M, Hu Y W, Zhong J X, Mao Y L 2014 Physica E 56 24

    [30]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [31]

    Kresse G, Joubert J 1999 Phys. Rev. B 59 1758

    [32]

    Sakai Y, Koretsune T, Saito S 2011 Phys. Rev. B 83 205434

    [33]

    Liu Z, Song L, Zhao S, Huang J, Ma L, Zhang J, Lou J, Ajayan P M 2011 Nano Lett. 11 2032

    [34]

    Liu L, Ryu S M, Tomasik M R, Stolyarova E, Jung N, Hybertsen M S, Steigerwald M L, Brus L E, Flynn G W 2008 Nano Lett. 8 1965

    [35]

    Ryu S, Liu L, Berciaud S, Yu Y J, Liu H, Kim P, Flynn G W, Brus L E 2010 Nano Lett. 10 4944

    [36]

    Morozov S V, Novoselov K S, Schedin F, Jiang D, Firsov A A, Geim A K 2005 Phys. Rev. B 72 201401

    [37]

    Behera H, Mukhopadhyay G 2012 J. Phys. Chem. Solids 73 818

  • [1]

    Xu L, Dai Z H, Wang S, Liu B, Sun Y M, Wang W T 2014 Acta Phys. Sin. 63 107102 (in Chinese) [徐雷, 戴振宏, 王森, 刘兵, 孙玉明, 王伟田 2014 63 107102]

    [2]

    Xu L, Dai Z H, Sui P F, Wang W T, Sun Y M 2014 Acta Phys. Sin. 63 186101 (in Chinese) [徐雷, 戴振宏, 隋鹏飞, 王伟田, 孙玉明 2014 63 186101]

    [3]

    Dai Z H, Zhao Y C 2014 Appl. Surf. Sci. 305 382

    [4]

    Zhang Y, Hu C H, Wen Y H, Wu S Q, Zhu Z Z 2011 New J. Phys. 13 063047

    [5]

    Meyer J C, Chuvilin A, Algara-Siller G, Biskupek J, Kaiser U 2009 Nano Lett. 9 2683

    [6]

    Zhi C Y, Bando Y, Tang C C, Kuwahara H, Golberg D 2009 Adv. Mater. 21 2889

    [7]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722

    [8]

    Decker R, Wang Y, Brar V W, Regan W, Tsai H Z, Wu Q, Gannett W, Zettl A, Crommie M F 2011 Nano Lett. 11 2291

    [9]

    Kharche N, Nayak S K 2011 Nano Lett. 11 5274

    [10]

    Sachs B, Wehling T O, Katsnelson M I, Lichtenstein A I 2011 Phys. Rev. B 84 195414

    [11]

    Kindermann M, Uchoa B, Miller D L 2012 Phys. Rev. B 86 115415

    [12]

    Song J C W, Shytov A V, Levitov L S 2013 Phys. Rev. Lett. 111 266801

    [13]

    Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Harillo-Herrero P, Jacquod P, Leroy B J 2012 Nat. Phys. 8 382

    [14]

    Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598

    [15]

    Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 6139

    [16]

    Mucha-Kruczynski M, Wallbank J R, FalKo V I 2013 Phys. Rev. B 88 205418

    [17]

    Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Mucha-Kruczynski M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, FalKo V I, Geim A K 2013 Nature 497 594

    [18]

    Pikalov A A, Fil D V 2012 Nanoscale. Res. Lett. 7 145

    [19]

    Geim A K 2009 Science 324 1530

    [20]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [21]

    Weitz R T, Yacoby A 2010 Nat. Nanotechnol. 5 699

    [22]

    Peres N M R 2010 Rev. Mod. Phys. 82 2673

    [23]

    Sarma S D, Hwang E H 2011 Phys. Rev. B 83 121405

    [24]

    Giovannetti G, Khomyakov P A, Brocks G, Kelly P J, van den Brink J 2007 Phys. Rev. B 76 073103

    [25]

    Zhong X, Yap Y K, Pandey R, Karna S P 2011 Phys. Rev. B 83 193403

    [26]

    Fan Y, Zhao M, Wang Z, Zhang X, Zhang H 2011 Appl. Phys. Lett. 98 083103

    [27]

    Mao Y L, Xie Z Q, Yuan J M, Li S H, Wei Z, Zhong J X 2013 Physica E 49 111

    [28]

    Hashmi A, Hong J S 2014 J. Magn. Magn. Mater. 355 7

    [29]

    Li S H, Yuan J M, Hu Y W, Zhong J X, Mao Y L 2014 Physica E 56 24

    [30]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [31]

    Kresse G, Joubert J 1999 Phys. Rev. B 59 1758

    [32]

    Sakai Y, Koretsune T, Saito S 2011 Phys. Rev. B 83 205434

    [33]

    Liu Z, Song L, Zhao S, Huang J, Ma L, Zhang J, Lou J, Ajayan P M 2011 Nano Lett. 11 2032

    [34]

    Liu L, Ryu S M, Tomasik M R, Stolyarova E, Jung N, Hybertsen M S, Steigerwald M L, Brus L E, Flynn G W 2008 Nano Lett. 8 1965

    [35]

    Ryu S, Liu L, Berciaud S, Yu Y J, Liu H, Kim P, Flynn G W, Brus L E 2010 Nano Lett. 10 4944

    [36]

    Morozov S V, Novoselov K S, Schedin F, Jiang D, Firsov A A, Geim A K 2005 Phys. Rev. B 72 201401

    [37]

    Behera H, Mukhopadhyay G 2012 J. Phys. Chem. Solids 73 818

  • [1] Zhou Jia-Jian, Zhang Yu-Wen, He Chao-Yu, Ouyang Tao, Li Jin, Tang Chao. First-principles study of structure prediction and electronic properties of two-dimensional SiP2 allotropes. Acta Physica Sinica, 2022, 71(23): 236101. doi: 10.7498/aps.71.20220853
    [2] Zhang Xiao-Chao, Guan Mei-Hua, Zhang Qi-Rui, Zhang Chang-Ming, Li Rui, Liu Jian-Xin, Wang Ya-Wen, Fan Cai-Mei. First-principles study of single-atom Pt adsorption on BiOBr{001} surface with different atomic exposure terminations. Acta Physica Sinica, 2021, 70(8): 087101. doi: 10.7498/aps.70.20201572
    [3] Hou Lu, Tong Xin, Ouyang Gang. First-principles study of atomic bond nature of one-dimensional carbyne chain under different strains. Acta Physica Sinica, 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [4] Zuo Bo-Min, Yuan Jian-Mei, Feng Zhi, Mao Yu-Liang. First-principles study of five isomers of two-dimensional GeSe under in-plane strain. Acta Physica Sinica, 2019, 68(11): 113103. doi: 10.7498/aps.68.20182266
    [5] Chen Lu, Li Ye-Fei, Zheng Qiao-Ling, Liu Qing-Kun, Gao Yi-Min, Li Bo, Zhou Chang-Meng. Theoretical study of atomic relaxation, surface energy, electronic structure and properties of B2- and B19'-NiTi surfaces. Acta Physica Sinica, 2019, 68(5): 053101. doi: 10.7498/aps.68.20181944
    [6] Ding Chao, Li Wei1\2\3, Liu Ju-Yan, Wang Lin-Lin, Cai Yun, Pan Pei-Feng. First principle study of electronic structure of Sb, S Co-doped SnO2. Acta Physica Sinica, 2018, 67(21): 213102. doi: 10.7498/aps.67.20181228
    [7] Liu Bo, Wang Xuan-Jun, Bu Xiao-Yu. First principles investigations of structural, electronic and elastic properties of ammonium perchlorate under high pressures. Acta Physica Sinica, 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [8] Xu Jing, Liang Jia-Qing, Li Hong-Ping, Li Chang-Sheng, Liu Xiao-Juan, Meng Jian. First-principles study on the electronic structure of Ti-doped NbSe2. Acta Physica Sinica, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [9] He Jing-Fang, Zheng Shu-Kai, Zhou Peng-Li, Shi Ru-Qian, Yan Xiao-Bing. First-principles calculations on the electronic and optical properties of ZnO codoped with Cu-Co. Acta Physica Sinica, 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [10] Feng Xiao-Qin, Jia Jian-Ming, Chen Gui-Bin. Electronic properties and modulation of structurally bent BN nanoribbon. Acta Physica Sinica, 2014, 63(3): 037101. doi: 10.7498/aps.63.037101
    [11] Xu Lei, Dai Zhen-Hong, Wang Sen, Liu Bing, Sun Yu-Ming, Wang Wei-Tian. First principles study of fluorinated boron-carbon sheets. Acta Physica Sinica, 2014, 63(10): 107102. doi: 10.7498/aps.63.107102
    [12] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [13] Li Hong-Lin, Zhang Zhong, Lü Ying-Bo, Huang Jin-Zhao, Zhang Ying, Liu Ru-Xi. First principles study on the electronic and optical properties of ZnO doped with rare earth. Acta Physica Sinica, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [14] Zhang Ji-Hua, Ding Jian-Wen, Lu Zhang-Hui. First-principles study of electrical structures and optical properties of Co:MgF2 crystal. Acta Physica Sinica, 2009, 58(3): 1901-1907. doi: 10.7498/aps.58.1901
    [15] Lin Zhu, Guo Zhi-You, Bi Yan-Jun, Dong Yu-Cheng. Ferromagnetism and the optical properties of Cu-doped AlN from first-principles study. Acta Physica Sinica, 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [16] Huang Yun-Xia, Cao Quan-Xi, Li Zhi-Min, Li Gui-Fang, Wang Yu-Peng, Wei Yun-Ge. First-principles calculation of microwave dielectric properties of Al-doping ZnO powders. Acta Physica Sinica, 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
    [17] Song Jiu-Xu, Yang Yin-Tang, Liu Hong-Xia, Zhang Zhi-Yong. First-principles study of the electonic structure of nitrogen-doped silicon carbide nanotubes. Acta Physica Sinica, 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [18] Yang Min, Wang Liu-Ding, Chen Guo-Dong, An Bo, Wang Yi-Jun, Liu Guang-Qing. First-principles study on field emission of C-doped capped single-walled BNNT. Acta Physica Sinica, 2009, 58(10): 7151-7155. doi: 10.7498/aps.58.7151
    [19] Chen Guo-Dong, Wang Liu-Ding, An Bo, Yang Min. First principles study of electron field emission from the system of BN nano tuber capped and doped with carbon atom. Acta Physica Sinica, 2009, 58(13): 254-S258. doi: 10.7498/aps.58.254
    [20] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Shen Yi-Bin, Chen Qing-Yun, Ding Ying-Chun, Zhu Wen-Jun. First-principles study on the electronic structure and optical properties of ZnO doped with transition metal and N. Acta Physica Sinica, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
Metrics
  • Abstract views:  6743
  • PDF Downloads:  463
  • Cited By: 0
Publishing process
  • Received Date:  08 March 2016
  • Accepted Date:  16 April 2016
  • Published Online:  05 July 2016

/

返回文章
返回
Baidu
map