搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维SiP2同素异构体结构预测及其电子性质的第一性原理研究

周嘉健 张宇文 何朝宇 欧阳滔 李金 唐超

引用本文:
Citation:

二维SiP2同素异构体结构预测及其电子性质的第一性原理研究

周嘉健, 张宇文, 何朝宇, 欧阳滔, 李金, 唐超

First-principles study of structure prediction and electronic properties of two-dimensional SiP2 allotropes

Zhou Jia-Jian, Zhang Yu-Wen, He Chao-Yu, Ouyang Tao, Li Jin, Tang Chao
PDF
HTML
导出引用
  • 本文通过基于群论和图论的晶体结构随机预测方法(RG2), 搜索发现了3种新型二维SiP2同素异构体结构α-SiP2, β-SiP2, γ-SiP2, 并采用基于密度泛函理论的第一性原理方法研究了它们的稳定性和电子性质. 结果表明, 3种新型SiP2结构在热力学、动力学及机械力学方面均具有良好稳定性. 它们的电子结构具有满足光催化要求的带隙值, 且带隙可通过施加应变进行有效调制. 这使得3种新型SiP2异构体有望应用于纳米级光催化剂的设计与制作. 研究还发现, 3种新型二维SiP2同素异构体均具有较好的压电性质, 其中α-SiP2和β-SiP2异构体的压电系数大于h-BN, 且可与MoS2相比拟. 这些新型结构将有望被应用于制备纳米机电设备以实现微纳尺度的机-电转换和电-机传感与控制.
    Since the successful preparation of single-layer graphene in 2004, the two-dimensional (2D) materials have received widespread attention. Driven by this research upsurge, many kinds of 2D compound materials with different properties have been discovered one after another, and some of these 2D materials have a variety of allotropes, showing more abundant properties. Our computational studies focus on searching for new stable 2D SiP2 allotropes, and studying their binding energy, phonon dispersions, electronic band structures, strain-dependent bandgap modulation behaviors, piezoelectric properties, etc. In this paper, three novel 2D SiP2 allotrope structures, i.e. α-SiP2, β-SiP2, and γ-SiP2, are found by the random prediction method of crystal structure based on group theory and graph theory (RG2). Their stabilities and electronic properties are investigated by using the first-principles method based on the density functional theory. The results show that the three novel SiP2 structures are stable thermodynamically, dynamically and mechanically. Using the GW calculations, three novel SiP2 structures possess indirect band gaps of 2.62, 2.99 and 3.00 eV, respectively. Their band gaps are feasible to modulate effectively by applying strain. The band gaps of the three novel SiP2 isomers are reduced significantly when subjected to a large strainused, and the three novel SiP2 isomers exhibit indirect-to-direct bandgap transitions when experienced by a certain strain along the x-axis direction. These properties make them potential materials that are suitable for serving as nanoscale photocatalysts. Moreover, three SiP2 isomers have non-centrosymmetric crystal structures, which enable them to exhibit their piezoelectricities. Therefore, we study their piezoelectric properties by combining the Berry phase theory. Our studies show that three novel 2D SiP2 allotropes have good piezoelectric properties. The piezoelectric coefficient of the α-SiP2 isomer and the β-SiP2 isomer are both larger than that of h-BN, and they are comparable to the counterpart of MoS2. These novel structures promise to be used to fabricate nano-electromechanical devices for micro- and nano-scaled electromechanical conversion and electromechanical sensing and controlling.
      通信作者: 唐超, tang_chao@xtu.edu.cn
    • 基金项目: 国家自然科学基金面上项目 (批准号: 11974299, 11974300)和湖南省教育厅重点项目 (批准号: 20A503, 20K127)资助的课题.
      Corresponding author: Tang Chao, tang_chao@xtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974299, 11974300) and the Research Foundation of Education Bureau of Hunan Province, China (Grant Nos. 20A503, 20K127).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [3]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [4]

    Topsakal M, Aktuerk E, Ciraci S 2009 Phys. Rev. B 79 115442Google Scholar

    [5]

    Cahangirov S, Topsakal M, Akturk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804Google Scholar

    [6]

    Li L, Yu Y, Ye G, Ge Q, Ou X, Wu H, Feng D, Chen, Xian H, Zhang Y B 2014 Nature Nanotechnology 9 372Google Scholar

    [7]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tomanek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [8]

    Li T, Eugenio C, Daniele C, Carlo G, Marco F, Madan D, Alessandro M, Deji A 2015 Nat. Nanotechnol. 10 227Google Scholar

    [9]

    Duerloo K-A N, Ong M T, Reed E J 2012 J. Phys. Chem. Lett. 3 2871Google Scholar

    [10]

    Fazel S, Jae R H, Hong S K 2017 J. Mater. Chem. A 5 22146Google Scholar

    [11]

    Guo J, Liu Y, Ma Y, Zhu E B, Lee S, Lu Z X, Zhao Z P, Xu C H, Lee S J, Wu H, Kovnir K, Huang Y, Duan X F 2018 Adv. Mater. 30 e1705934Google Scholar

    [12]

    Yang S X, Yang Y H, Wu M H, Hu C G, Shen W F, Gong Y J, Huang L, Jiang C H, Zhang Y Z, Ajayan P M 2018 Adv. Funct. Mater. 28 1707379Google Scholar

    [13]

    Zhou L Q, Guo Y, Zhao J J 2018 Physica E Low Dimens. Syst. Nanostruct. 95 149Google Scholar

    [14]

    Li L, Gong P L, Sheng D P, Wang S A, Wang W K, Zhu X D, Shi X Q, Wang F K, Han W, Yang S J, Liu K L, Li H Q, Zhai T Y 2018 Adv. Mater. 30 e1804541Google Scholar

    [15]

    Wadsten T 1967 Acts Chem. Scand. 21 1374

    [16]

    Matta S K, Zhang C, Jiao Y, O, Mullane A, Du A 2018 Nanoscale 10 6369Google Scholar

    [17]

    Xu Y, Li Z, He C, Li J, Ouyang T, Zhang C, Tang C, Zhong J 2020 Appl. Phys. Lett. 116 023103Google Scholar

    [18]

    Xi F, Yang H Y, Ling F, He C Z, Hou J R, Guo J Y, Li L M 2021 Chin. Chem. Lett. 32 1089Google Scholar

    [19]

    Shi X Z, He C Y, Pickard C J, Tang C, Zhong J X 2018 Phys. Rev. B 97 014104Google Scholar

    [20]

    King-Smith R D, Vanderbilt D 1993 Phys. Rev. B 47 1651Google Scholar

    [21]

    Vanderbilt D 2000 J. Phys. Chem. Solids 61 147Google Scholar

    [22]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [23]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [24]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [25]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [27]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [28]

    Gomes L C, Carvalho A, Neto A H C 2015 Phys. Rev. B 92 214103Google Scholar

    [29]

    Ni M, Leung M K H, Leung D Y C, Sumathy K 2006 Renew. Sust. Energ. Rev. 11 401

    [30]

    Roldan R, Castellanos-Gomez A, Cappelluti E, Guinea F 2015 J. Phys. Condens. Matter 27 313201Google Scholar

    [31]

    Zhu C R, Wang G, Liu B L, Marie X, Qiao X F, Zhang X, Wu X X, Fan H, Tan P H, Amand T, Urbaszek B 2013 Phys. Rev. B 88 121301Google Scholar

    [32]

    Conley H J, Wang B, Ziegler J I, Haglund R F Jr, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626Google Scholar

    [33]

    Fei R, Li W, Li J, Yang L 2015 Appl. Phys. Lett. 107 173104Google Scholar

    [34]

    Blonsky M N, Zhuang H L, Singh A K, Hennig R G 2015 ACS Nano 9 9885Google Scholar

    [35]

    Sevik C, Çakır D, Gülseren O, Peeters F M 2016 J. Phys. Chem. C 120 13948Google Scholar

    [36]

    Michel K H, Verberck B 2009 Phys. Rev. B 80 224301Google Scholar

    [37]

    Liu S, Cohen R 2017 Phys. Rev. Lett. 119 207601Google Scholar

  • 图 1  3种SiP2同素异构体及r-SiP2结构的俯视图(上图)和侧视图(下图) (a) α-SiP2; (b) β-SiP2; (c) γ-SiP2; (d) r-SiP2[14], 红色和绿色分别代表P和Si原子

    Fig. 1.  Top view and side view of three SiP2 allotropes and r-SiP2 structure: (a) α-SiP2; (b) β-SiP2; (c) γ-SiP2; (d) r-SiP2[14]. Red and green balls represent P and Si atoms, respectively.

    图 2  3种SiP2异构体声子谱 (a) α-SiP2; (b) β-SiP2; (c) γ-SiP2

    Fig. 2.  Phonon dispersion of three SiP2 isomers: (a) α-SiP2; (b) β-SiP2; (c) γ-SiP2.

    图 3  3种SiP2异构体电子能带结构 (a) α-SiP2; (b) β-SiP2; (c) γ-SiP2, 其中红线和黑线分别为GW和HSE的计算结果

    Fig. 3.  Electronic band structures of three SiP2 isomers: (a) α-SiP2; (b) β-SiP2; (c) γ-SiP2. The red and black lines are the calculation results of GW and HSE, respectively.

    图 4  3种SiP2异构体的带边位置, 其中虚线为用于水分解的标准氧化还原电势.

    Fig. 4.  Band edge positions of three SiP2 isomers, the dashed line is the standard redox potential for water splitting.

    图 5  3种SiP2异构体施加应变后电子带隙的变化, 其中x轴正值表示拉伸应变, 负值表示压缩应变

    Fig. 5.  Changes in the electronic band gaps of three SiP2 isomers after applying straining, where positive values along the x-axis represent tensile strain and negative values represent compressive strain.

    图 6  3种SiP2异构体沿x轴方向施加应变后间接-直接带隙转变过程 (a) α-SiP2; (b) β-SiP2; (c) γ-SiP2

    Fig. 6.  Indirect-irect band gap transition processes of three SiP2 isomers after applying strain along the x-axis: (a) α-SiP2; (b) β-SiP2; (c) γ-SiP2.

    图 7  3种SiP2异构体施加单轴应变后沿x轴晶胞极化矢量变化

    Fig. 7.  Changes in the polarization vector of the unit cell along the x-axis for three SiP2 isomers after applying uniaxial strain.

    表 1  优化后的3种SiP2同素异构体及r-SiP2[16]结构晶格常数、形成能(Eb)和带隙值(Eg)

    Table 1.  Optimized lattice parameters, binding energy (Eb), and band gap values (Eg) of three SiP2 allotropes and r-SiP2[16] structures.

    SystemAb${ {E} }_{\text{b} }\text{/}\text{eV}$${ {E} }_{\text{g} }^{\text{PBE} }\text{/}\text{eV}$${ {E} }_{\text{g} }^{\text{HSE} }\text{/}\text{eV}$${ {E} }_{\text{g} }^{\text{GW} }\text{/}\text{eV}$
    α-SiP26.1313.89–5.381.442.172.62
    β-SiP26.0913.73–5.431.842.612.99
    γ-SiP212.1113.95–5.451.782.553.00
    r-SiP210.003.44–5.471.472.252.63
    下载: 导出CSV

    表 2  3种SiP2异构体的弹性常数Cij (N/m)及压电系数eij (10–10 C/m)和dij (pm/V)

    Table 2.  Calculated elastic coefficients Cij (N/m) and piezoelectric coefficients eij (10–10 C/m) and dij (pm/V) of three SiP2 allotropes.

    System$ {C}_{11} $$ {C}_{22} $$ {C}_{12} $$ {e}_{11} $$ {e}_{12} $$ {d}_{11} $$ {d}_{12} $
    α-SiP269.6965.7414.79–1.050.37–1.710.95
    β-SiP278.3665.4319.10–0.94–0.38–1.13–0.26
    γ-SiP277.6559.9718.04–0.13–0.46–0.01–0.77
    r-SiP2[17]17.94121.778.66–1.930.17–11.220.93
    h-BN[9]291291621.381.380.600.60
    MoS2[9]130130323.643.643.733.73
    下载: 导出CSV
    Baidu
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [3]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [4]

    Topsakal M, Aktuerk E, Ciraci S 2009 Phys. Rev. B 79 115442Google Scholar

    [5]

    Cahangirov S, Topsakal M, Akturk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804Google Scholar

    [6]

    Li L, Yu Y, Ye G, Ge Q, Ou X, Wu H, Feng D, Chen, Xian H, Zhang Y B 2014 Nature Nanotechnology 9 372Google Scholar

    [7]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tomanek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [8]

    Li T, Eugenio C, Daniele C, Carlo G, Marco F, Madan D, Alessandro M, Deji A 2015 Nat. Nanotechnol. 10 227Google Scholar

    [9]

    Duerloo K-A N, Ong M T, Reed E J 2012 J. Phys. Chem. Lett. 3 2871Google Scholar

    [10]

    Fazel S, Jae R H, Hong S K 2017 J. Mater. Chem. A 5 22146Google Scholar

    [11]

    Guo J, Liu Y, Ma Y, Zhu E B, Lee S, Lu Z X, Zhao Z P, Xu C H, Lee S J, Wu H, Kovnir K, Huang Y, Duan X F 2018 Adv. Mater. 30 e1705934Google Scholar

    [12]

    Yang S X, Yang Y H, Wu M H, Hu C G, Shen W F, Gong Y J, Huang L, Jiang C H, Zhang Y Z, Ajayan P M 2018 Adv. Funct. Mater. 28 1707379Google Scholar

    [13]

    Zhou L Q, Guo Y, Zhao J J 2018 Physica E Low Dimens. Syst. Nanostruct. 95 149Google Scholar

    [14]

    Li L, Gong P L, Sheng D P, Wang S A, Wang W K, Zhu X D, Shi X Q, Wang F K, Han W, Yang S J, Liu K L, Li H Q, Zhai T Y 2018 Adv. Mater. 30 e1804541Google Scholar

    [15]

    Wadsten T 1967 Acts Chem. Scand. 21 1374

    [16]

    Matta S K, Zhang C, Jiao Y, O, Mullane A, Du A 2018 Nanoscale 10 6369Google Scholar

    [17]

    Xu Y, Li Z, He C, Li J, Ouyang T, Zhang C, Tang C, Zhong J 2020 Appl. Phys. Lett. 116 023103Google Scholar

    [18]

    Xi F, Yang H Y, Ling F, He C Z, Hou J R, Guo J Y, Li L M 2021 Chin. Chem. Lett. 32 1089Google Scholar

    [19]

    Shi X Z, He C Y, Pickard C J, Tang C, Zhong J X 2018 Phys. Rev. B 97 014104Google Scholar

    [20]

    King-Smith R D, Vanderbilt D 1993 Phys. Rev. B 47 1651Google Scholar

    [21]

    Vanderbilt D 2000 J. Phys. Chem. Solids 61 147Google Scholar

    [22]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [23]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [24]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [25]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [27]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [28]

    Gomes L C, Carvalho A, Neto A H C 2015 Phys. Rev. B 92 214103Google Scholar

    [29]

    Ni M, Leung M K H, Leung D Y C, Sumathy K 2006 Renew. Sust. Energ. Rev. 11 401

    [30]

    Roldan R, Castellanos-Gomez A, Cappelluti E, Guinea F 2015 J. Phys. Condens. Matter 27 313201Google Scholar

    [31]

    Zhu C R, Wang G, Liu B L, Marie X, Qiao X F, Zhang X, Wu X X, Fan H, Tan P H, Amand T, Urbaszek B 2013 Phys. Rev. B 88 121301Google Scholar

    [32]

    Conley H J, Wang B, Ziegler J I, Haglund R F Jr, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626Google Scholar

    [33]

    Fei R, Li W, Li J, Yang L 2015 Appl. Phys. Lett. 107 173104Google Scholar

    [34]

    Blonsky M N, Zhuang H L, Singh A K, Hennig R G 2015 ACS Nano 9 9885Google Scholar

    [35]

    Sevik C, Çakır D, Gülseren O, Peeters F M 2016 J. Phys. Chem. C 120 13948Google Scholar

    [36]

    Michel K H, Verberck B 2009 Phys. Rev. B 80 224301Google Scholar

    [37]

    Liu S, Cohen R 2017 Phys. Rev. Lett. 119 207601Google Scholar

  • [1] 刘俊岭, 柏于杰, 徐宁, 张勤芳. GaS/Mg(OH)2异质结电子结构的第一性原理研究.  , 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [2] 张颖, 刘春生. 硅醚/石墨醚异质结构光电性质的理论研究.  , 2021, 70(12): 123102. doi: 10.7498/aps.70.20202193
    [3] 左博敏, 袁健美, 冯志, 毛宇亮. 应力调控下二维硒化锗五种同分异构体的第一性原理研究.  , 2019, 68(11): 113103. doi: 10.7498/aps.68.20182266
    [4] 陈璐, 李烨飞, 郑巧玲, 刘庆坤, 高义民, 李博, 周长猛. B2-和B19'-NiTi表面原子弛豫、表面能、电子结构及性能的理论研究.  , 2019, 68(5): 053101. doi: 10.7498/aps.68.20181944
    [5] 丁超, 李卫, 刘菊燕, 王琳琳, 蔡云, 潘沛锋. Sb,S共掺杂SnO2电子结构的第一性原理分析.  , 2018, 67(21): 213102. doi: 10.7498/aps.67.20181228
    [6] 胡洁琼, 谢明, 陈家林, 刘满门, 陈永泰, 王松, 王塞北, 李爱坤. Ti3AC2相(A = Si,Sn,Al,Ge)电子结构、弹性性质的第一性原理研究.  , 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [7] 陈庆玲, 戴振宏, 刘兆庆, 安玉凤, 刘悦林. 双层h-BN/Graphene结构稳定性及其掺杂特性的第一性原理研究.  , 2016, 65(13): 136101. doi: 10.7498/aps.65.136101
    [8] 刘博, 王煊军, 卜晓宇. 高压下NH4ClO4结构、电子及弹性性质的第一性原理研究.  , 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [9] 潘凤春, 林雪玲, 陈焕铭. C掺杂金红石相TiO2的电子结构和光学性质的第一性原理研究.  , 2015, 64(22): 224218. doi: 10.7498/aps.64.224218
    [10] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究.  , 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [11] 彭琼, 何朝宇, 李金, 钟建新. MoSi2薄膜电子性质的第一性原理研究.  , 2015, 64(4): 047102. doi: 10.7498/aps.64.047102
    [12] 彭军辉, 曾庆丰, 谢聪伟, 朱开金, 谭俊华. Hf-C体系的高压结构预测及电子性质第一性原理模拟.  , 2015, 64(23): 236102. doi: 10.7498/aps.64.236102
    [13] 谢知, 程文旦. TiO2纳米管电子结构和光学性质的第一性原理研究.  , 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [14] 程旭东, 吴海信, 唐小路, 王振友, 肖瑞春, 黄昌保, 倪友保. Na2Ge2Se5电子结构和光学性质的第一性原理研究.  , 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [15] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究.  , 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [16] 余本海, 刘墨林, 陈东. 第一性原理研究Mg2 Si同质异相体的结构、电子结构和弹性性质.  , 2011, 60(8): 087105. doi: 10.7498/aps.60.087105
    [17] 于大龙, 陈玉红, 曹一杰, 张材荣. Li2NH晶体结构建模和电子结构的第一性原理研究.  , 2010, 59(3): 1991-1996. doi: 10.7498/aps.59.1991
    [18] 张计划, 丁建文, 卢章辉. Co掺杂MgF2电子结构和光学特性的第一性原理研究.  , 2009, 58(3): 1901-1907. doi: 10.7498/aps.58.1901
    [19] 刘娜娜, 宋仁伯, 孙翰英, 杜大伟. Mg2Sn电子结构及热力学性质的第一性原理计算.  , 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
    [20] 潘志军, 张澜庭, 吴建生. 掺杂半导体β-FeSi2电子结构及几何结构第一性原理研究.  , 2005, 54(11): 5308-5313. doi: 10.7498/aps.54.5308
计量
  • 文章访问数:  4372
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-29
  • 修回日期:  2022-07-07
  • 上网日期:  2022-12-05
  • 刊出日期:  2022-12-05

/

返回文章
返回
Baidu
map