-
Since high-mobility electron gas, which is also called two-dimensional electron gas, was discovered at the LaAlO3/SrTiO3 (LAO/STO) interface, SrTiO3-based heterostructures and nanostructures have become an attractive platform for novel nanoelectronic devices. Exploring the novel physical properties of LAO/STO interface and the mechanisms of interface effect is the key to designing and fabricating the new photoelectric devices. The LAO/STO sample is prepared on an STO (001) substrate by pulsed laser deposition. In order to study the influence of interface effect on photovoltaic effect in the LAO/STO sample, a KrF pulse laser with a wavelength of 248 nm and an energy density of 50 mJ/cm2 is chosen as an ultraviolet light source, a sampling oscilloscope of 350 MHz is used to measure the photovoltages, and a precision adjustable slit is adopted to control the size of irradiation area. The photovoltaic effect is studied under the condition of applied electric field at ambient temperature. The experimental results prove that the photovolatge of irradiating on the side of sample (LAO/STO interface) is higher than on the front of sample (film surface) under the same area of irradiation. Lateral photovoltaic effect is discovered in the LAO/STO sample. Irradiating on the side of sample (LAO/STO interface) can further improve the lateral photovoltaic effect in the LAO/STO sample. The open-circuit photovoltage depends linearly on the illuminated position, and the sensitivity reaches 36.8 mV/mm. The sensitivity of the lateral photovoltaic effect can be modified by the bias voltage. The experimental results not only contributes to better understanding the interface effect in LAO/STO interface, but also provides a basis for designing and using photoelectric devices for position-sensitive detection.
-
Keywords:
- LaAlO3/SrTiO3 interface /
- interface effect /
- latera thel photovoltaic effect /
- photoelectric properties
[1] Tra V T, Chen J W, Huang P C, Huang B C, Cao Y, Yeh C H, Liu H J, Eliseev E A, Morozovska A N, Lin J Y, Chen Y C, Chu M W, Chiu P W, Chiu Y P, Chen L Q, Wu C L, Chu Y H 2013 Adv. Mater. 25 3357Google Scholar
[2] Thiel S, Hammerl G, Schmehl A, Schneider C W, Mannhart J 2006 Science 313 1942Google Scholar
[3] Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Ruetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196Google Scholar
[4] Caviglia A D, Gariglio S, Reyren N, Jaccard D, Schneider T, Gabay M, Thiel S, Hammerl G, Mannhart J, Triscone J M 2008 Nature 456 624Google Scholar
[5] Bi F, Huang M, Ryu S, Lee H, Bark C W, Eom C B, Irvin P, Levy J 2014 Nat. Commun. 5 5019Google Scholar
[6] 李敏, 时鑫娜, 张泽霖, 吉彦达, 樊济宇, 杨浩 2019 68 087302Google Scholar
Li M, Shi X N, Zhang Z L, Ji Y D, Fan J Y, Yang H 2019 Acta Phys. Sin. 68 087302Google Scholar
[7] Li L, Richter C, Mannhart J, Ashoori R C 2011 Nat. Phys. 7 762Google Scholar
[8] Bert J A, Kalisky B, Bell C, Kim M, Hikita Y, Hwang H Y, Moler K A 2011 Nat. Phys. 7 767Google Scholar
[9] Lee P, Singh V, Guo G, Liu H J, Lin J C, Chu Y H, Chen C, Chu M W 2016 Nat. Commun. 7 12773Google Scholar
[10] 朱立峰, 潘文远, 谢燕, 张波萍, 尹阳, 赵高磊 2019 68 217701Google Scholar
Zhu L F, Pan W Y, Xie Y, Zhang B P, Yin Y, Zhao G L 2019 Acta Phys. Sin. 68 217701Google Scholar
[11] Sharma P, Huang Z, Li M, Li C, Hu S, Lee H, Lee J W, Eom C B, Pennycook S J, Seidel J 2018 Adv. Funct. Mater. 28 1707159Google Scholar
[12] Bark C W, Sharma P, Wang Y, Baek S H, Lee S, Ryu S, Folkman C M, Paudel T R, Kumar A, Kalinin S V, Sokolov A, Tsymbal E Y, Rzchowski M S, Gruverman A, Eom C B 2012 Nano Lett. 12 1765Google Scholar
[13] Huang M, Bi F, Bark C W, Ryu S, Cho K H, Eom C B, Levy J 2014 Appl. Phys. Lett. 104 161606Google Scholar
[14] Ohtomo A, Hwang H Y 2004 Nature 427 423Google Scholar
[15] Harsan Ma H J, Huang Z, Lu W M, Annadi A, Zeng S W, Wong L M, Wang S J, Venkatesan T, Ariando 2014 Appl. Phys. Lett. 105 011603Google Scholar
[16] Brinkman A, Huijben M, Van Zalk M, Huijben J, Zeitler U, Maan J C, Van der Wiel W G, Rijnders G, Blank D H A, Hilgenkamp H 2007 Nat. Mater. 6 493Google Scholar
[17] Ngo T D N, Chang J W, Lee K, Han S, Lee J S, Kim Y H, Jung M H, Doh Y J, Choi M S, Song J, Kim J 2015 Nat. Commun. 6 8035Google Scholar
[18] Irvin P, Ma Y, Bogorin D F, Cen C, Bark C W, Folkman C M, Eom C B, Levy J 2010 Nat. Photonics 4 849Google Scholar
[19] Behtash M, Nazir S, Wang Y, Yang K 2016 Phys. Chem. Chem. Phys. 18 6831Google Scholar
[20] 刀流云, 张子涛, 肖煜同, 张明昊, 王帅, 何珺, 贾金山, 余乐军, 孙波, 熊昌民 2019 68 067302Google Scholar
Dao L Y, Zhang Z T, Xiao Y T, Zhang M H, Wang Sh, He J, Jia J S, Yu L J, Sun B, Xiong C M 2019 Acta Phys. Sin. 68 067302Google Scholar
[21] Gu M, Wang J, Wu X S, Zhang G P 2012 J. Phys. Chem. C 116 24993Google Scholar
[22] Nakagawa N, Hwang H Y, Muller D A 2006 Nat. Mater. 5 204Google Scholar
[23] Bristowe N C, Littlewood P B, Artacho E 2011 Phys. Rev. B 83 205405Google Scholar
[24] Kalabukhov A, Gunnarsson R, Börjesson J, Olsson E, Claeson T, Winkler D 2007 Phys. Rev. B 75 121404Google Scholar
[25] Gunkel F, Brinks P, Susanne H E, Dittmann R, Huijben M, Kleibeuker J E, Koster G, Rijnders G, Waser R 2012 Appl. Phys. Lett. 100 052103Google Scholar
[26] Caputo M, Boselli M, Filippetti A, Lemal S, Li D, Chikina A, Cancellieri C, Schmitt T, Triscone J M, Ghosez P, Gariglio S, Strocov V N 2020 Phys. Rev. Mater. 4 035001Google Scholar
[27] Bell C, Harashima S, Hikita Y, Hwang H Y 2009 Appl. Phys. Lett. 94 222111Google Scholar
[28] Gariglio S, Fete A, Triscone J M 2016 J. Phys. Condens. Matter 27 283201
[29] Arnold D, Fuchs D, Wolff K, Schafer R 2019 Appl. Phys. Lett. 115 122601Google Scholar
[30] Yu C, Wang H 2010 Sensors 10 10155Google Scholar
[31] Lucovsky G 1960 J. Appl. Phys. 31 1088Google Scholar
-
图 2 (a) 不同偏压下248 nm激光正面照射LAO/STO样品光生电压波形图; (b) 正面照射光生电压随偏压的变化; (c) 不同偏压下激光侧面照射LAO/STO样品光生电压波形图; (d) 侧面照射光生电压随偏压的变化
Figure 2. (a) Photovoltaic waveforms for LAO/STO sample at different bias voltages under the 248 nm laser front illumination; (b) photovoltages as a function of bias voltages under front illumination; (c) photovoltaic waveforms for LAO/STO sample at different bias voltages under side illumination; (d) photovoltages as a function of bias voltages under side illumination.
-
[1] Tra V T, Chen J W, Huang P C, Huang B C, Cao Y, Yeh C H, Liu H J, Eliseev E A, Morozovska A N, Lin J Y, Chen Y C, Chu M W, Chiu P W, Chiu Y P, Chen L Q, Wu C L, Chu Y H 2013 Adv. Mater. 25 3357Google Scholar
[2] Thiel S, Hammerl G, Schmehl A, Schneider C W, Mannhart J 2006 Science 313 1942Google Scholar
[3] Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Ruetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196Google Scholar
[4] Caviglia A D, Gariglio S, Reyren N, Jaccard D, Schneider T, Gabay M, Thiel S, Hammerl G, Mannhart J, Triscone J M 2008 Nature 456 624Google Scholar
[5] Bi F, Huang M, Ryu S, Lee H, Bark C W, Eom C B, Irvin P, Levy J 2014 Nat. Commun. 5 5019Google Scholar
[6] 李敏, 时鑫娜, 张泽霖, 吉彦达, 樊济宇, 杨浩 2019 68 087302Google Scholar
Li M, Shi X N, Zhang Z L, Ji Y D, Fan J Y, Yang H 2019 Acta Phys. Sin. 68 087302Google Scholar
[7] Li L, Richter C, Mannhart J, Ashoori R C 2011 Nat. Phys. 7 762Google Scholar
[8] Bert J A, Kalisky B, Bell C, Kim M, Hikita Y, Hwang H Y, Moler K A 2011 Nat. Phys. 7 767Google Scholar
[9] Lee P, Singh V, Guo G, Liu H J, Lin J C, Chu Y H, Chen C, Chu M W 2016 Nat. Commun. 7 12773Google Scholar
[10] 朱立峰, 潘文远, 谢燕, 张波萍, 尹阳, 赵高磊 2019 68 217701Google Scholar
Zhu L F, Pan W Y, Xie Y, Zhang B P, Yin Y, Zhao G L 2019 Acta Phys. Sin. 68 217701Google Scholar
[11] Sharma P, Huang Z, Li M, Li C, Hu S, Lee H, Lee J W, Eom C B, Pennycook S J, Seidel J 2018 Adv. Funct. Mater. 28 1707159Google Scholar
[12] Bark C W, Sharma P, Wang Y, Baek S H, Lee S, Ryu S, Folkman C M, Paudel T R, Kumar A, Kalinin S V, Sokolov A, Tsymbal E Y, Rzchowski M S, Gruverman A, Eom C B 2012 Nano Lett. 12 1765Google Scholar
[13] Huang M, Bi F, Bark C W, Ryu S, Cho K H, Eom C B, Levy J 2014 Appl. Phys. Lett. 104 161606Google Scholar
[14] Ohtomo A, Hwang H Y 2004 Nature 427 423Google Scholar
[15] Harsan Ma H J, Huang Z, Lu W M, Annadi A, Zeng S W, Wong L M, Wang S J, Venkatesan T, Ariando 2014 Appl. Phys. Lett. 105 011603Google Scholar
[16] Brinkman A, Huijben M, Van Zalk M, Huijben J, Zeitler U, Maan J C, Van der Wiel W G, Rijnders G, Blank D H A, Hilgenkamp H 2007 Nat. Mater. 6 493Google Scholar
[17] Ngo T D N, Chang J W, Lee K, Han S, Lee J S, Kim Y H, Jung M H, Doh Y J, Choi M S, Song J, Kim J 2015 Nat. Commun. 6 8035Google Scholar
[18] Irvin P, Ma Y, Bogorin D F, Cen C, Bark C W, Folkman C M, Eom C B, Levy J 2010 Nat. Photonics 4 849Google Scholar
[19] Behtash M, Nazir S, Wang Y, Yang K 2016 Phys. Chem. Chem. Phys. 18 6831Google Scholar
[20] 刀流云, 张子涛, 肖煜同, 张明昊, 王帅, 何珺, 贾金山, 余乐军, 孙波, 熊昌民 2019 68 067302Google Scholar
Dao L Y, Zhang Z T, Xiao Y T, Zhang M H, Wang Sh, He J, Jia J S, Yu L J, Sun B, Xiong C M 2019 Acta Phys. Sin. 68 067302Google Scholar
[21] Gu M, Wang J, Wu X S, Zhang G P 2012 J. Phys. Chem. C 116 24993Google Scholar
[22] Nakagawa N, Hwang H Y, Muller D A 2006 Nat. Mater. 5 204Google Scholar
[23] Bristowe N C, Littlewood P B, Artacho E 2011 Phys. Rev. B 83 205405Google Scholar
[24] Kalabukhov A, Gunnarsson R, Börjesson J, Olsson E, Claeson T, Winkler D 2007 Phys. Rev. B 75 121404Google Scholar
[25] Gunkel F, Brinks P, Susanne H E, Dittmann R, Huijben M, Kleibeuker J E, Koster G, Rijnders G, Waser R 2012 Appl. Phys. Lett. 100 052103Google Scholar
[26] Caputo M, Boselli M, Filippetti A, Lemal S, Li D, Chikina A, Cancellieri C, Schmitt T, Triscone J M, Ghosez P, Gariglio S, Strocov V N 2020 Phys. Rev. Mater. 4 035001Google Scholar
[27] Bell C, Harashima S, Hikita Y, Hwang H Y 2009 Appl. Phys. Lett. 94 222111Google Scholar
[28] Gariglio S, Fete A, Triscone J M 2016 J. Phys. Condens. Matter 27 283201
[29] Arnold D, Fuchs D, Wolff K, Schafer R 2019 Appl. Phys. Lett. 115 122601Google Scholar
[30] Yu C, Wang H 2010 Sensors 10 10155Google Scholar
[31] Lucovsky G 1960 J. Appl. Phys. 31 1088Google Scholar
Catalog
Metrics
- Abstract views: 5352
- PDF Downloads: 116
- Cited By: 0