搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

B掺入Cu∑5晶界间隙位性质的第一性原理研究

孟凡顺 赵星 李久会

引用本文:
Citation:

B掺入Cu∑5晶界间隙位性质的第一性原理研究

孟凡顺, 赵星, 李久会

The first-principles study on properties of B-doped at interstitial site of Cu∑5 grain boundary

Meng Fan-Shun, Zhao Xing, Li Jiu-Hui
PDF
导出引用
  • 本文采用第一性原理方法对清洁Cu∑5晶界与有B掺杂 到间隙位的Cu∑5晶界进 行了拉伸和压缩的模拟研究. 结果分析表明, Cu∑ 5晶界结合因B的掺入得到加强. 清洁Cu∑5晶界处因有较大空隙而存在电子密度低的区域, 晶界结合相对较弱, 在拉伸过程中晶界从其界面处开始断裂. 有B掺杂在间隙位的Cu∑5晶界电子由Cu向Cu-B间积聚, 晶界结合相对较强, 拉伸时晶界从其近邻原子层开始断裂. 在形变小于20%的压缩过程中, B的掺入未对晶界产生明显影响.
    The uniaxial tensile and compression tests of the Cu∑ 5 grain boundary (GB) with and without segregated interstitial boron have been performed using first principles method based on density functional theory. Results show that boron enhances the cohesion of Cu∑5 GB and improves the mechanical property of Cu significantly. The clean boundary has lower density of valence electrons than perfect lattices and will be the point for fracture to start under sufficiently high tensile stress. The Cu∑5 GB with segregated boron has strengthened the cohesion across the boundary because of the strong B-Cu bond. Charge accumulated to Cu-B decreases slightly the strength of neighboring Cu-Cu bonds, which will be the weak point for fracture to initiate. The ultimate tensile stress is enlarged by the addition of boron. There is no significant effects occurring within 20% of the compression strain due to B-doping.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB606403) 资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB606403).
    [1]

    Liu L H, Zhang Y, L G H, Deng S H, Wang T M 2008 Acta Phys. Sin. 57 4428 (in Chinese) [刘利花, 张颖, 吕广宏, 邓胜华, 王天民 2008 57 4428]

    [2]

    Zhang S J, Kontsevoi O Y, Freeman A J, Olson G B 2010 Phys. Rev. B 82 224107

    [3]

    Tian Z X, Yan J X, Xiao W, Geng W T 2009 Phys. Rev. B 79 144114

    [4]

    Yang R, Wang Y M, Ye H Q, Wang C Y 2001 J. Phys.: Condens. Matter 13 4485

    [5]

    Wang R Z, Xu L C, Yan H, Kohyama M 2012 Acta Phys. Sin. 61 026801 (in Chinese) [王如志, 徐利春, 严辉, 香山正宪 2012 61 026801]

    [6]

    Lozovoi A Y, Paxton A T 2008 Phys. Rev. B 77 165413

    [7]

    Ogata S, Li J, Yip S 2002 Science 298 807

    [8]

    Lu L, Chen X, Huang X, Lu K 2009 Science 323 607

    [9]

    Geng W T, Freeman A J, Wu R, Olson G B 2000 Phys. Rev. B 62 6208

    [10]

    Geng W T, Freeman A J, Olson G B 2001 Phys. Rev. B 32 165415

    [11]

    Schweinfest R, Paxton A T, Finns M W 2004 Nature 432 1008

    [12]

    Geng W T, Freeman A J, Olson G B 2006 Materials Transactions 47 2113

    [13]

    Wu R, Freeman A J, Olson G B 1994 Science 265 376

    [14]

    Geng W T, Freeman A J, Wu R, Geller C B, Raynolds J E 1999 Phys. Rev. B 60 7149

    [15]

    Rice J R, Wang J S 1989 Mater. Sci. Eng. A 107 23

    [16]

    Ittermann B, Ackermann H, Stockmann H J, Ergezinger K H, Heemeier M, Kroll F, Mai F, Marbach K, Peters D, Sulzer G 1996 Phys. Rev. Lett. 77 4784

    [17]

    Stockmann H J, Ergezinger K H, Fullgerbe M, Ittermann B, Kroll F, Peters D 2001 Phys. Rev. B 64 224301

    [18]

    Yuasa M, Mabuchi M 2010 J. Phys.: Condens. Matt. 22 505705

    [19]

    Yuasa M, Mabuchi M 2010 Phys. Rev. B 82 094108

    [20]

    Zhang Y, Lu G H, Kohyama M, Wang T M 2009 Modelling Simul. Mater. Sci. Eng. 17 015003

    [21]

    Zhang L, Shu X L, Jin S, Zhang Y, Lu G H 2010 J. Phys.: Condens. Matt. 22 375401

    [22]

    Janisch R, Ahmed N, Hartmaier A 2010 Phys. Rev. B 81 184108

    [23]

    Yamaguchi M, Nishiyama Y, Kaburaki H 2007 Phys. Rev. B 76 035418

    [24]

    Kronberg M L, Wilson F H 1949 Trans. Am. Inst. Min. Metall. Pet. Eng. 185 501

    [25]

    Sorensen M R, Mishin Y, Voter A F 2000 Phys. Rev. B 62 3658

    [26]

    Duscher G, Chisholm M F, Alber U, Rhle M 2004 Nat. Mater. 3 621

    [27]

    Yamaguchi M, Shiga M, Kaburaki H 2005 Science 307 393

    [28]

    Chen Z Z, Wang C Y 2005 J. Phys.: Condens. Matter 17 6645

    [29]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [30]

    Kresse G, Furthmller J Phys. Rev. B 54 11169

    [31]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [32]

    Zhao Y, Truhlar D G 2004 J. Phys. Chem. A 108 6908

    [33]

    Wong B M 2009 J. Comput. Chem. 30 51

    [34]

    Lozovoi A Y, Paxton A T, Finns M W 2006 Phys. Rev. B 74 155416

    [35]

    Kittel 1996 Introduction to solid state physics (New York: John Wiley and Sons Inc.)

    [36]

    Tyson W R, Miller W A 1977 Surf. Sci 62 267

    [37]

    Cheng Y, Jin Z H, Zhang Y W, Gao H 2010 Acta. Mater. 58 2293

    [38]

    Alber U, Mllejans H, Rhle M 1999 Acta. Mater. 47 4047

    [39]

    Ballo P, Slugen V 2005 Comp. Mater. Sci. 33 491

    [40]

    Zhang Y, L G H, Deng S H, Wang T M 2006 Acta Phys. Sin. 55 2901 (in Chinese) [张颖, 吕广宏, 邓胜华, 王天民 2006 55 2901]

    [41]

    Lu G H, Deng S H, Wang T M, Kohyama M, Yamamoto R 2004 Phys. Rev. B 69 134106

  • [1]

    Liu L H, Zhang Y, L G H, Deng S H, Wang T M 2008 Acta Phys. Sin. 57 4428 (in Chinese) [刘利花, 张颖, 吕广宏, 邓胜华, 王天民 2008 57 4428]

    [2]

    Zhang S J, Kontsevoi O Y, Freeman A J, Olson G B 2010 Phys. Rev. B 82 224107

    [3]

    Tian Z X, Yan J X, Xiao W, Geng W T 2009 Phys. Rev. B 79 144114

    [4]

    Yang R, Wang Y M, Ye H Q, Wang C Y 2001 J. Phys.: Condens. Matter 13 4485

    [5]

    Wang R Z, Xu L C, Yan H, Kohyama M 2012 Acta Phys. Sin. 61 026801 (in Chinese) [王如志, 徐利春, 严辉, 香山正宪 2012 61 026801]

    [6]

    Lozovoi A Y, Paxton A T 2008 Phys. Rev. B 77 165413

    [7]

    Ogata S, Li J, Yip S 2002 Science 298 807

    [8]

    Lu L, Chen X, Huang X, Lu K 2009 Science 323 607

    [9]

    Geng W T, Freeman A J, Wu R, Olson G B 2000 Phys. Rev. B 62 6208

    [10]

    Geng W T, Freeman A J, Olson G B 2001 Phys. Rev. B 32 165415

    [11]

    Schweinfest R, Paxton A T, Finns M W 2004 Nature 432 1008

    [12]

    Geng W T, Freeman A J, Olson G B 2006 Materials Transactions 47 2113

    [13]

    Wu R, Freeman A J, Olson G B 1994 Science 265 376

    [14]

    Geng W T, Freeman A J, Wu R, Geller C B, Raynolds J E 1999 Phys. Rev. B 60 7149

    [15]

    Rice J R, Wang J S 1989 Mater. Sci. Eng. A 107 23

    [16]

    Ittermann B, Ackermann H, Stockmann H J, Ergezinger K H, Heemeier M, Kroll F, Mai F, Marbach K, Peters D, Sulzer G 1996 Phys. Rev. Lett. 77 4784

    [17]

    Stockmann H J, Ergezinger K H, Fullgerbe M, Ittermann B, Kroll F, Peters D 2001 Phys. Rev. B 64 224301

    [18]

    Yuasa M, Mabuchi M 2010 J. Phys.: Condens. Matt. 22 505705

    [19]

    Yuasa M, Mabuchi M 2010 Phys. Rev. B 82 094108

    [20]

    Zhang Y, Lu G H, Kohyama M, Wang T M 2009 Modelling Simul. Mater. Sci. Eng. 17 015003

    [21]

    Zhang L, Shu X L, Jin S, Zhang Y, Lu G H 2010 J. Phys.: Condens. Matt. 22 375401

    [22]

    Janisch R, Ahmed N, Hartmaier A 2010 Phys. Rev. B 81 184108

    [23]

    Yamaguchi M, Nishiyama Y, Kaburaki H 2007 Phys. Rev. B 76 035418

    [24]

    Kronberg M L, Wilson F H 1949 Trans. Am. Inst. Min. Metall. Pet. Eng. 185 501

    [25]

    Sorensen M R, Mishin Y, Voter A F 2000 Phys. Rev. B 62 3658

    [26]

    Duscher G, Chisholm M F, Alber U, Rhle M 2004 Nat. Mater. 3 621

    [27]

    Yamaguchi M, Shiga M, Kaburaki H 2005 Science 307 393

    [28]

    Chen Z Z, Wang C Y 2005 J. Phys.: Condens. Matter 17 6645

    [29]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [30]

    Kresse G, Furthmller J Phys. Rev. B 54 11169

    [31]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [32]

    Zhao Y, Truhlar D G 2004 J. Phys. Chem. A 108 6908

    [33]

    Wong B M 2009 J. Comput. Chem. 30 51

    [34]

    Lozovoi A Y, Paxton A T, Finns M W 2006 Phys. Rev. B 74 155416

    [35]

    Kittel 1996 Introduction to solid state physics (New York: John Wiley and Sons Inc.)

    [36]

    Tyson W R, Miller W A 1977 Surf. Sci 62 267

    [37]

    Cheng Y, Jin Z H, Zhang Y W, Gao H 2010 Acta. Mater. 58 2293

    [38]

    Alber U, Mllejans H, Rhle M 1999 Acta. Mater. 47 4047

    [39]

    Ballo P, Slugen V 2005 Comp. Mater. Sci. 33 491

    [40]

    Zhang Y, L G H, Deng S H, Wang T M 2006 Acta Phys. Sin. 55 2901 (in Chinese) [张颖, 吕广宏, 邓胜华, 王天民 2006 55 2901]

    [41]

    Lu G H, Deng S H, Wang T M, Kohyama M, Yamamoto R 2004 Phys. Rev. B 69 134106

  • [1] 陈东运, 高明, 李拥华, 徐飞, 赵磊, 马忠权. MoO3/Si界面区钼掺杂非晶氧化硅层形成的第一性原理研究.  , 2019, 68(10): 103101. doi: 10.7498/aps.68.20190067
    [2] 张梅玲, 陈玉红, 张材荣, 李公平. 内在缺陷与Cu掺杂共存对ZnO电磁光学性质影响的第一性原理研究.  , 2019, 68(8): 087101. doi: 10.7498/aps.68.20182238
    [3] 戚玉敏, 陈恒利, 金朋, 路洪艳, 崔春翔. 第一性原理研究Mn和Cu掺杂六钛酸钾(K2Ti6O13)的电子结构和光学性质.  , 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [4] 严顺涛, 姜振益. Cu掺杂对TiNi合金马氏体相变路径影响的第一性原理研究.  , 2017, 66(13): 130501. doi: 10.7498/aps.66.130501
    [5] 赵佰强, 张耘, 邱晓燕, 王学维. Cu,Fe掺杂LiNbO3晶体电子结构和光学性质的第一性原理研究.  , 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [6] 何静芳, 郑树凯, 周鹏力, 史茹倩, 闫小兵. Cu-Co共掺杂ZnO光电性质的第一性原理计算.  , 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [7] 孟凡顺, 李久会, 赵星. 第一性原理研究Zn偏析对CuΣ5晶界的影响.  , 2014, 63(23): 237102. doi: 10.7498/aps.63.237102
    [8] 周鹏力, 史茹倩, 何静芳, 郑树凯. B-Al共掺杂3C-SiC的第一性原理研究.  , 2013, 62(23): 233101. doi: 10.7498/aps.62.233101
    [9] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算.  , 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [10] 张玲, 何智兵, 廖国, 谌家军, 许华, 李俊. B掺杂对Ti薄膜结构与性能的影响.  , 2012, 61(18): 186803. doi: 10.7498/aps.61.186803
    [11] 唐冬华, 薛林, 孙立忠, 钟建新. B在Hg0.75Cd0.25Te中掺杂效应的第一性原理研究.  , 2012, 61(2): 027102. doi: 10.7498/aps.61.027102
    [12] 肖振林, 史力斌. 利用第一性原理研究Ni掺杂ZnO铁磁性起源.  , 2011, 60(2): 027502. doi: 10.7498/aps.60.027502
    [13] 张计划, 丁建文, 卢章辉. Co掺杂MgF2电子结构和光学特性的第一性原理研究.  , 2009, 58(3): 1901-1907. doi: 10.7498/aps.58.1901
    [14] 杨敏, 王六定, 陈国栋, 安博, 王益军, 刘光清. 碳掺杂闭口硼氮纳米管场发射第一性原理研究.  , 2009, 58(10): 7151-7155. doi: 10.7498/aps.58.7151
    [15] 黄云霞, 曹全喜, 李智敏, 李桂芳, 王毓鹏, 卫云鸽. Al掺杂ZnO粉体的第一性原理计算及微波介电性质.  , 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
    [16] 林竹, 郭志友, 毕艳军, 董玉成. Cu掺杂的AlN铁磁性和光学性质的第一性原理研究.  , 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [17] 陈 琨, 范广涵, 章 勇, 丁少锋. In-N共掺杂ZnO第一性原理计算.  , 2008, 57(5): 3138-3147. doi: 10.7498/aps.57.3138
    [18] 陈 琨, 范广涵, 章 勇. Mn掺杂ZnO光学特性的第一性原理计算.  , 2008, 57(2): 1054-1060. doi: 10.7498/aps.57.1054
    [19] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究.  , 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
    [20] 丁少锋, 范广涵, 李述体, 肖 冰. 氮化铟p型掺杂的第一性原理研究.  , 2007, 56(7): 4062-4067. doi: 10.7498/aps.56.4062
计量
  • 文章访问数:  6686
  • PDF下载量:  877
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-14
  • 修回日期:  2013-01-28
  • 刊出日期:  2013-06-05

/

返回文章
返回
Baidu
map