搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氟化硼碳平面的第一性原理研究

徐雷 戴振宏 王森 刘兵 孙玉明 王伟田

引用本文:
Citation:

氟化硼碳平面的第一性原理研究

徐雷, 戴振宏, 王森, 刘兵, 孙玉明, 王伟田

First principles study of fluorinated boron-carbon sheets

Xu Lei, Dai Zhen-Hong, Wang Sen, Liu Bing, Sun Yu-Ming, Wang Wei-Tian
PDF
导出引用
  • 基于第一性原理的理论计算,研究了不同氟化程度的BC3,BC5,BC7 的稳定结构和电子特征,发现通过B原子替代C原子,F原子与平面结构的结合能力更强了,氟化的硼碳结构比氢化的硼碳结构更加稳定. 研究发现:当只有C原子与F原子成键时,体系变成半导体,而当B原子与F 原子成键时,即所有原子都与F 原子成键,体系变成导体. 通过不同程度的氟化,BC3发生半 导体-金属的转变,BC5和BC7 发生金属-半导体-金属的转变. 理论分析表明,B原子的pz 轨道对电学性质变化有较大影响. 由于其丰富的电学特性,此类氟化硼碳平面在纳米电子器件领域中具有潜在应用,并且该结果对实验合成也有一定的指导意义.
    Based on the first principles, we investigate the structures and electronic properties of fluorinated BC3, BC5, and BC7. Through the fluorination of BC structure, boron-carbon sheets are more stable than the hydrogenation. The results show that the system becomes semiconductor only on condition that the boron atoms can be bonded with the carbon atoms, whereas, the whole system will become the conductor when all atoms participate in the bonding. With the variation of fluorination degrees, semiconductor-metal transitions appear in the BC3 compounds and metal-semiconductor-metal transitions appear in the BC5 and BC7 sheet. Theoretical analyses find that pz orbital of boron atoms plays an important role in the electronic transition. Because of the rich electronic properties, this kind of fluorinated boron-carbon compound will become potential nanoelectronic materials and our results can play a role in guiding experiments.
    • 基金项目: 教育部新世纪优秀人才支持计划(批准号:NCET-09-0867)资助的课题.
    • Funds: Project supported by the Program for the New Century Excellent Talents in University of Ministry of Education, China (Grant No. NCET-09-0867).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Berger C, Song Z, Li T, Li X, Ogbazghi A Y, Feng R, Dai Z, Marchenkov A N, Conrad E H, First P N, De Heer W A 2006 Science 312 1191

    [3]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红 2012 61 248502]

    [4]

    Liu Y, Yao J, Chen C, Miao L, Jiang J J 2013 Acta Phys. Sin. 62 063601 (in Chinese) [刘源, 姚洁, 陈驰, 缪灵, 江建军 2013 62 063601]

    [5]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [6]

    Castro Neto A H, Guinea F 2009 Rev. Mod. Phys. 91 109

    [7]

    Xu X G, Zhang D L, Wu Y, Zhang X, Li X Q, Yang H L, Jiang Y 2012 Rare Metals 31 107

    [8]

    Zhang D L, Xu X G, Wang W, Zhang X, Yang H L, Wu Y, Ma C Z, Jiang Y 2012 Rare Metals 31 112

    [9]

    Pan Z J, Zhang L T, Wu J S 2005 Acta Phys. Sin. 54 5308 (in Chinese) [潘志军, 张澜庭, 吴建生 2005 54 5308]

    [10]

    Chen Z J, Xiao H Y, Zu X T 2005 Acta Phys. Sin. 54 5301 (in Chinese) [陈中钧, 肖海燕, 祖小涛 2005 54 5301]

    [11]

    Yin D, Liu F Q, Fan X J 2005 Chin. Phys. B 14 2287

    [12]

    Wei H Y, Xiong X L, Song H T, Luo S Z 2010 Chin. Phys. Lett. 27 097102

    [13]

    Liu D D, Zhang H 2010 Chin. Phys. Lett. 27 093601

    [14]

    Feng H J, Liu F M 2008 Chin. Phys. Lett. 25 671

    [15]

    Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S 2009 Science 323 610

    [16]

    Sahin H, Ataca C, Ciraci S 2010 Phys. Rev. B 81 205417

    [17]

    Topsakal M, Cahangirov S, Ciraci S 2010 Appl. Phys. Lett. 96 091912

    [18]

    Boukhvalov D W 2010 Physica E 43 199

    [19]

    Cheng S H, Zou K, Okino F, Gutierrez H R, Gupta A, Shen N, Eklund P C, Sofo J O, Zhu J 2010 Phys. Rev. B 81 205435

    [20]

    Sahin H, Topsakal M, Ciraci S 2011 Phys. Rev. B 83 115432

    [21]

    Charlier J C, Gonze X, Michenaud J P 1993 Phys. Rev. B 47 16162

    [22]

    Robinson J T, Burgess J S, Junkermeier C E, Badescu S C, Reinecke T L, Perkins F K, Zalalutdniov M K, Baldwin J W, Culbertson J C, Sheehan P E, Snow E S 2010 Nano Lett. 10 3001

    [23]

    Nair R R, Ren W, Jalil R, Riaz I, Kravets V G, Britnell L, Blake P, Schedin F, Mayorov A S, Yuan S, Katsnelson M I, Cheng H M, Strupinski W, Bulusheva L G, Okotrub A V, Grigorieva I V, Grigorenko A N, Novoselov K S, Geim A K 2010 Small 6 2877

    [24]

    Panchakarla L S, Govindaraj A, Rao C N R 2007 ACS Nano 1 494

    [25]

    Subrahmanyam K S, Panchakarla L S, Govindaraj A, Rao C N R 2009 J. Phys. Chem. C 113 4257

    [26]

    Wang D, Zhang Z H, Deng X Q, Fan Z Q 2013 Acta Phys. Sin. 62 207101 (in Chinese) [王鼎, 张振华, 邓小清, 范志强 2013 62 207101]

    [27]

    Pontes R B, Fazzio A, Dalpian G M 2009 Phys. Rev. B 79 033412

    [28]

    Magri R 1994 Phys. Rev. B 49 2805

    [29]

    Xi C, Jun N 2013 Phys. Rev. B 88 115430

    [30]

    Zhao Y C, Dai Z H, Sui P F, Zhang X L 2013 Acta Phys. Sin. 62 137301 (in Chinese) [赵银昌, 戴振宏, 隋鹏飞, 张晓玲 2013 62 137301]

    [31]

    Ding Y, Wang Y L, Ni J, Shi L, Shi S Q, Li C R, Tang W H 2011 Nanoscale Res. Lett. 6 190

    [32]

    Ding Y, Ni J 2009 J. Phys. Chem. C 113 18468

    [33]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [34]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [35]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [36]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [37]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [38]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [39]

    Miyamoto Y, Rubio A, Louie S G, Cohen M L 1994 Phys. Rev. B 50 18360

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Berger C, Song Z, Li T, Li X, Ogbazghi A Y, Feng R, Dai Z, Marchenkov A N, Conrad E H, First P N, De Heer W A 2006 Science 312 1191

    [3]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红 2012 61 248502]

    [4]

    Liu Y, Yao J, Chen C, Miao L, Jiang J J 2013 Acta Phys. Sin. 62 063601 (in Chinese) [刘源, 姚洁, 陈驰, 缪灵, 江建军 2013 62 063601]

    [5]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [6]

    Castro Neto A H, Guinea F 2009 Rev. Mod. Phys. 91 109

    [7]

    Xu X G, Zhang D L, Wu Y, Zhang X, Li X Q, Yang H L, Jiang Y 2012 Rare Metals 31 107

    [8]

    Zhang D L, Xu X G, Wang W, Zhang X, Yang H L, Wu Y, Ma C Z, Jiang Y 2012 Rare Metals 31 112

    [9]

    Pan Z J, Zhang L T, Wu J S 2005 Acta Phys. Sin. 54 5308 (in Chinese) [潘志军, 张澜庭, 吴建生 2005 54 5308]

    [10]

    Chen Z J, Xiao H Y, Zu X T 2005 Acta Phys. Sin. 54 5301 (in Chinese) [陈中钧, 肖海燕, 祖小涛 2005 54 5301]

    [11]

    Yin D, Liu F Q, Fan X J 2005 Chin. Phys. B 14 2287

    [12]

    Wei H Y, Xiong X L, Song H T, Luo S Z 2010 Chin. Phys. Lett. 27 097102

    [13]

    Liu D D, Zhang H 2010 Chin. Phys. Lett. 27 093601

    [14]

    Feng H J, Liu F M 2008 Chin. Phys. Lett. 25 671

    [15]

    Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S 2009 Science 323 610

    [16]

    Sahin H, Ataca C, Ciraci S 2010 Phys. Rev. B 81 205417

    [17]

    Topsakal M, Cahangirov S, Ciraci S 2010 Appl. Phys. Lett. 96 091912

    [18]

    Boukhvalov D W 2010 Physica E 43 199

    [19]

    Cheng S H, Zou K, Okino F, Gutierrez H R, Gupta A, Shen N, Eklund P C, Sofo J O, Zhu J 2010 Phys. Rev. B 81 205435

    [20]

    Sahin H, Topsakal M, Ciraci S 2011 Phys. Rev. B 83 115432

    [21]

    Charlier J C, Gonze X, Michenaud J P 1993 Phys. Rev. B 47 16162

    [22]

    Robinson J T, Burgess J S, Junkermeier C E, Badescu S C, Reinecke T L, Perkins F K, Zalalutdniov M K, Baldwin J W, Culbertson J C, Sheehan P E, Snow E S 2010 Nano Lett. 10 3001

    [23]

    Nair R R, Ren W, Jalil R, Riaz I, Kravets V G, Britnell L, Blake P, Schedin F, Mayorov A S, Yuan S, Katsnelson M I, Cheng H M, Strupinski W, Bulusheva L G, Okotrub A V, Grigorieva I V, Grigorenko A N, Novoselov K S, Geim A K 2010 Small 6 2877

    [24]

    Panchakarla L S, Govindaraj A, Rao C N R 2007 ACS Nano 1 494

    [25]

    Subrahmanyam K S, Panchakarla L S, Govindaraj A, Rao C N R 2009 J. Phys. Chem. C 113 4257

    [26]

    Wang D, Zhang Z H, Deng X Q, Fan Z Q 2013 Acta Phys. Sin. 62 207101 (in Chinese) [王鼎, 张振华, 邓小清, 范志强 2013 62 207101]

    [27]

    Pontes R B, Fazzio A, Dalpian G M 2009 Phys. Rev. B 79 033412

    [28]

    Magri R 1994 Phys. Rev. B 49 2805

    [29]

    Xi C, Jun N 2013 Phys. Rev. B 88 115430

    [30]

    Zhao Y C, Dai Z H, Sui P F, Zhang X L 2013 Acta Phys. Sin. 62 137301 (in Chinese) [赵银昌, 戴振宏, 隋鹏飞, 张晓玲 2013 62 137301]

    [31]

    Ding Y, Wang Y L, Ni J, Shi L, Shi S Q, Li C R, Tang W H 2011 Nanoscale Res. Lett. 6 190

    [32]

    Ding Y, Ni J 2009 J. Phys. Chem. C 113 18468

    [33]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [34]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [35]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [36]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [37]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [38]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [39]

    Miyamoto Y, Rubio A, Louie S G, Cohen M L 1994 Phys. Rev. B 50 18360

  • [1] 周嘉健, 张宇文, 何朝宇, 欧阳滔, 李金, 唐超. 二维SiP2同素异构体结构预测及其电子性质的第一性原理研究.  , 2022, 71(23): 236101. doi: 10.7498/aps.71.20220853
    [2] 张颖, 刘春生. 硅醚/石墨醚异质结构光电性质的理论研究.  , 2021, 70(12): 123102. doi: 10.7498/aps.70.20202193
    [3] 张小超, 管美画, 张启瑞, 张长明, 李瑞, 刘建新, 王雅文, 樊彩梅. 单原子Pt吸附于不同原子暴露终端BiOBr{001}面的第一性原理研究.  , 2021, 70(8): 087101. doi: 10.7498/aps.70.20201572
    [4] 陈璐, 李烨飞, 郑巧玲, 刘庆坤, 高义民, 李博, 周长猛. B2-和B19'-NiTi表面原子弛豫、表面能、电子结构及性能的理论研究.  , 2019, 68(5): 053101. doi: 10.7498/aps.68.20181944
    [5] 左博敏, 袁健美, 冯志, 毛宇亮. 应力调控下二维硒化锗五种同分异构体的第一性原理研究.  , 2019, 68(11): 113103. doi: 10.7498/aps.68.20182266
    [6] 陈庆玲, 戴振宏, 刘兆庆, 安玉凤, 刘悦林. 双层h-BN/Graphene结构稳定性及其掺杂特性的第一性原理研究.  , 2016, 65(13): 136101. doi: 10.7498/aps.65.136101
    [7] 刘博, 王煊军, 卜晓宇. 高压下NH4ClO4结构、电子及弹性性质的第一性原理研究.  , 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [8] 彭军辉, 曾庆丰, 谢聪伟, 朱开金, 谭俊华. Hf-C体系的高压结构预测及电子性质第一性原理模拟.  , 2015, 64(23): 236102. doi: 10.7498/aps.64.236102
    [9] 彭琼, 何朝宇, 李金, 钟建新. MoSi2薄膜电子性质的第一性原理研究.  , 2015, 64(4): 047102. doi: 10.7498/aps.64.047102
    [10] 冯小勤, 贾建明, 陈贵宾. 弯曲BN纳米片的电子性质及其调制.  , 2014, 63(3): 037101. doi: 10.7498/aps.63.037101
    [11] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算.  , 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [12] 肖化平, 陈元平, 杨凯科, 魏晓林, 孙立忠, 钟建新. 无序双层六角氮化硼量子薄膜的电子性质.  , 2012, 61(17): 178101. doi: 10.7498/aps.61.178101
    [13] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究.  , 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [14] 李青坤, 孙毅, 周玉, 曾凡林. 第一性原理研究bct-C4碳材料的强度性质.  , 2012, 61(9): 093104. doi: 10.7498/aps.61.093104
    [15] 李青坤, 孙毅, 周玉, 曾凡林. 第一性原理研究hcp-C3碳体环材料的力学性质.  , 2012, 61(4): 043103. doi: 10.7498/aps.61.043103
    [16] 杨敏, 王六定, 陈国栋, 安博, 王益军, 刘光清. 碳掺杂闭口硼氮纳米管场发射第一性原理研究.  , 2009, 58(10): 7151-7155. doi: 10.7498/aps.58.7151
    [17] 王六定, 陈国栋, 张教强, 杨敏, 王益军, 安博. 碳纳米锥电子场发射的第一性原理研究.  , 2009, 58(11): 7852-7856. doi: 10.7498/aps.58.7852
    [18] 陈国栋, 王六定, 安博, 杨敏. 碳掺杂硼氮纳米管电子场发射的第一性原理研究.  , 2009, 58(13): 254-S258. doi: 10.7498/aps.58.254
    [19] 井 群, 张 俊, 王清林, 罗有华. 第一性原理对GenB(n=12—19)团簇的最低能量结构及其电子性质的研究.  , 2007, 56(8): 4477-4483. doi: 10.7498/aps.56.4477
    [20] 葛桂贤, 井 群, 杨 致, 闫玉丽, 雷雪玲, 赵文杰, 王清林, 罗有华. 第一性原理对NaBen(n=1—12)团簇最低能量结构及其电子性质的研究.  , 2006, 55(9): 4548-4552. doi: 10.7498/aps.55.4548
计量
  • 文章访问数:  6017
  • PDF下载量:  574
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-04
  • 修回日期:  2014-02-12
  • 刊出日期:  2014-05-05

/

返回文章
返回
Baidu
map