-
NiTi alloys with equiatomic compositions have been widely used as structural materials in aerospace, aviation and other fields due to their shape memory effects and good mechanical performances. At the same time, they are considered as excellent biomedical materials for their biocompatibilities and high fatigue resistances. As structural materials, the oxidation resistance of NiTi alloy should be improved. However, as biomedical materials, the formation of dense TiO2 layers on the surface of NiTi alloy is required to suppress the release of Ni ions in body liquid. As a result, it is of great significance to study the oxidation mechanism of NiTi alloy. In this work, while the total number of Ti is kept the same as that of Ni atoms in the whole system, a series of defected c(22)-NiTi (110) surfaces with antisite of Ti are constructed to further understand the oxidation mechanism of NiTi alloy. The adsorption of oxygen atom at the NiTi (110) surface is investigated by the first-principles calculations. The calculated results show that the stability of the oxygen adsorption is strongly related to the enrichment of Ti atoms on the surface. The higher the enrichment of Ti atoms on the surface, the stronger the adsorption of oxygen atoms is. When the coverage of oxygen is high enough, the adsorption of oxygen atoms on the surface could cause the antisite of Ti atoms on the surface by the exchange of Ni atoms in the first layer with Ti atoms in other layers. Under the O-rich conditions (O -9.35 eV), it is the most stable that the oxygen atoms adsorbed on Ti antisite surface, with the whole Ni atoms in the first surface layer exchanged with the whole Ti atoms in the third surface layer. With the increase of the adsorbed oxygen atoms on the surface, the heights of Ti atoms in the surface layers are raised by the adsorption of oxygen. The TiO2 layer is formed by the expansive growth, while Ni atoms are enriched beneath the TiO2. As a result, the reason why the TiO2 layer is formed on the NiTi alloy surface in the experimental conditions is well explained.
-
Keywords:
- first-principles calculation /
- NiTi alloy /
- TiO2 /
- surface energy
[1] Ma L, Wang X, Shang J X 2014 Acta Phys. Sin. 63 233103 (in Chinese) [马蕾, 王旭, 尚家香 2014 63 233103]
[2] Wu H L, Zhao X Q, Gong S K 2008 Acta Phys. Sin. 57 7794 (in Chinese) [吴红丽, 赵新青, 宫声凯 2008 57 7794]
[3] Geng F, Shi P, Yang D Z 2005 J. Funct. Mater. 36 11 (in Chinese) [耿芳, 石萍, 杨大智 2005 功能材料 36 11]
[4] Wang Y X, Zhang X N, Sun K 2006 Chin. J. Rare Metals 30 385 (in Chinese) [王蕴贤, 张小农, 孙康 2006 稀有金属 30 385]
[5] Starosvetsky D, Gotman I 2001 Biomaterials 22 1853
[6] Li Y, Zhao T, Wei S, Xiang Y, Chen H 2010 Mater. Sci. Eng. C 30 1227
[7] Tan L, Dodd R A, Crone W C 2003 Biomaterials 24 3931
[8] Zhao T, Li Y, Xiang Y, Xiang Y, Zhao X, Zhang T 2011 Surf. Coat. Technol. 205 4404
[9] Mndl S, Lindner J K N 2006 Nucl. Instr. Meth. Phys. Res. B 249 355
[10] Lutz J, Lindner J K N, Mndl S 2008 Appl. Surf. Sci. 255 1107
[11] Bernard S A, Balla V K, Davies N M, Bose S, Bandyopadhyay A 2011 Acta Biomater. 7 1902
[12] Hassel A W, Neelakantan L, Zelenkevych A, Ruh A 2008 Corros. Sci. 50 1368
[13] Sun T, Wang M, Lee W C 2011 Mater. Chem. Phys. 130 45
[14] Firstov G S, Vitchev R G, Kumar B, Blanpain B, Humbeeck J V 2002 Biomaterials 23 4863
[15] Gu Y W, Tay B Y, Lim C S, Yong M S 2005 Biomaterials 26 6916
[16] Gu Y W, Tay B Y, Lim C S, Yong M S 2005 Appl. Surf. Sci. 252 2038
[17] Undisz A, Schrempel F, Wesch W, Rettenmayr M 2012 J. Biomed. Mater. Res. 100A 1743
[18] Chu C L, Wu S K, Yen Y C 1996 Mater. Sci. Eng. A 216 193
[19] Nolan M, Tofail S A M 2010 Biomaterials 31 3439
[20] Nigussa K N, Stvneg J A 2010 Phys. Rev. B 82 245401
[21] Liu X, Guo H M, Meng C G 2012 J. Phys. Chem. C 116 21771
[22] Li Y C, Wang F H, Shang J X 2016 Corros. Sci. 106 137
[23] Kibey S, Sehitoglu H, Johnson D D 2009 Acta Mater. 57 1624
[24] Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169
[25] Blchl P E 1994 Phys. Rev. B 50 17953
[26] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1993 Phys. Rev. B 48 4972
[27] Zhang C, Farhat Z N 2009 Wear 267 394
[28] Diebold U 2003 Surf. Sci. Rep. 48 53
[29] Muscat J, Swamy V, Harrison N M 2002 Phys. Rev. B 65 224112
[30] Reuter K, Scheffler M 2001 Phys. Rev. B 65 035406
[31] Bergermayer W, Schweiger H, Wimmer E 2004 Phys. Rev. B 69 195409
[32] Liu K, Wang F H 2016 Mater. Protect. 49 65 (in Chinese) [刘坤, 王福合 2016 材料防护 49 65]
-
[1] Ma L, Wang X, Shang J X 2014 Acta Phys. Sin. 63 233103 (in Chinese) [马蕾, 王旭, 尚家香 2014 63 233103]
[2] Wu H L, Zhao X Q, Gong S K 2008 Acta Phys. Sin. 57 7794 (in Chinese) [吴红丽, 赵新青, 宫声凯 2008 57 7794]
[3] Geng F, Shi P, Yang D Z 2005 J. Funct. Mater. 36 11 (in Chinese) [耿芳, 石萍, 杨大智 2005 功能材料 36 11]
[4] Wang Y X, Zhang X N, Sun K 2006 Chin. J. Rare Metals 30 385 (in Chinese) [王蕴贤, 张小农, 孙康 2006 稀有金属 30 385]
[5] Starosvetsky D, Gotman I 2001 Biomaterials 22 1853
[6] Li Y, Zhao T, Wei S, Xiang Y, Chen H 2010 Mater. Sci. Eng. C 30 1227
[7] Tan L, Dodd R A, Crone W C 2003 Biomaterials 24 3931
[8] Zhao T, Li Y, Xiang Y, Xiang Y, Zhao X, Zhang T 2011 Surf. Coat. Technol. 205 4404
[9] Mndl S, Lindner J K N 2006 Nucl. Instr. Meth. Phys. Res. B 249 355
[10] Lutz J, Lindner J K N, Mndl S 2008 Appl. Surf. Sci. 255 1107
[11] Bernard S A, Balla V K, Davies N M, Bose S, Bandyopadhyay A 2011 Acta Biomater. 7 1902
[12] Hassel A W, Neelakantan L, Zelenkevych A, Ruh A 2008 Corros. Sci. 50 1368
[13] Sun T, Wang M, Lee W C 2011 Mater. Chem. Phys. 130 45
[14] Firstov G S, Vitchev R G, Kumar B, Blanpain B, Humbeeck J V 2002 Biomaterials 23 4863
[15] Gu Y W, Tay B Y, Lim C S, Yong M S 2005 Biomaterials 26 6916
[16] Gu Y W, Tay B Y, Lim C S, Yong M S 2005 Appl. Surf. Sci. 252 2038
[17] Undisz A, Schrempel F, Wesch W, Rettenmayr M 2012 J. Biomed. Mater. Res. 100A 1743
[18] Chu C L, Wu S K, Yen Y C 1996 Mater. Sci. Eng. A 216 193
[19] Nolan M, Tofail S A M 2010 Biomaterials 31 3439
[20] Nigussa K N, Stvneg J A 2010 Phys. Rev. B 82 245401
[21] Liu X, Guo H M, Meng C G 2012 J. Phys. Chem. C 116 21771
[22] Li Y C, Wang F H, Shang J X 2016 Corros. Sci. 106 137
[23] Kibey S, Sehitoglu H, Johnson D D 2009 Acta Mater. 57 1624
[24] Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169
[25] Blchl P E 1994 Phys. Rev. B 50 17953
[26] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1993 Phys. Rev. B 48 4972
[27] Zhang C, Farhat Z N 2009 Wear 267 394
[28] Diebold U 2003 Surf. Sci. Rep. 48 53
[29] Muscat J, Swamy V, Harrison N M 2002 Phys. Rev. B 65 224112
[30] Reuter K, Scheffler M 2001 Phys. Rev. B 65 035406
[31] Bergermayer W, Schweiger H, Wimmer E 2004 Phys. Rev. B 69 195409
[32] Liu K, Wang F H 2016 Mater. Protect. 49 65 (in Chinese) [刘坤, 王福合 2016 材料防护 49 65]
Catalog
Metrics
- Abstract views: 7205
- PDF Downloads: 232
- Cited By: 0