搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原子吸附的二维CrI3铁磁半导体电学和磁学性质的第一性原理研究

秦文静 徐波 孙宝珍 刘刚

引用本文:
Citation:

原子吸附的二维CrI3铁磁半导体电学和磁学性质的第一性原理研究

秦文静, 徐波, 孙宝珍, 刘刚

First principles study of electrical and magnetic properties of two-dimensional ferromagnetic semiconductors CrI3 adsorbed by atoms

Qin Wen-Jing, Xu Bo, Sun Bao-Zhen, Liu Gang
PDF
HTML
导出引用
  • 采用第一性原理的方法系统研究了碱(土)金属原子、过渡金属原子和非金属原子吸附的二维CrI3单层的电学和磁学性质. 结果表明, 金属原子倾向于吸附在6个I原子形成的环中心并且与Cr原子处于同一高度, 非金属原子吸附在I原子形成的环内, 但位置则依赖于原子种类. 除Ti和Mn原子之外的其他原子的吸附并未改变CrI3单层的本征铁磁半导体属性, 而Ti和Mn原子的吸附则使CrI3单层转变为反铁磁构型. 金属原子的吸附导致Cr原子局域磁矩增加, 但不超过4μB; 而非金属原子的吸附则使Cr原子的局域磁矩呈现多样化. 结合分波态密度我们对Cr局域磁矩的变化机制进行了细致分析, 发现Cr磁矩的增加与电荷转移直接相关. 我们的研究结果为铁磁半导体CrI3的性能调控提供了新的思路, 在未来自旋电子学中有着潜在的应用前景.
    Recent experimental discovery of intrinsic ferromagnetism (FM) in chromium triiodide (CrI3) monolayer opens a new way to low-dimensional spintronics. Two-dimensional (2D) CrI3 monolayer is of great significance for its magnetic and electronic properties. Generally, surface atomic adsorption is an effective way to modify the physical properties of layered magnetic materials. Here in this work, we use the first-principles method based on density functional theory (DFT) to systematically study the electronic structure and magnetic properties of 2D CrI3 monolayers that have adsorbed other metal atoms (specifically, alkali (alkaline earth) metal (Li, K and Mg), transition metal (Ti, V, Mn, Fe, Co and Ni) and non-metal (N, P, O and S) atoms). Our results show that the metal atoms tend to be adsorbed in the center of the ring formed by the six I atoms and stay at the same height as Cr atoms, while the positions of the optimized non-metal atoms are in the ring formed by the six I atoms and depend on the type of the atoms. The adsorption of atoms (except for Ti and Mn atoms) does not change the intrinsic ferromagnetic semiconducting properties of CrI3 monolayer. The CrI3 monolayers with Ti or Mn adsorption are antiferromagnetic semiconductors. Moreover, we find that the adsorption of different atoms regulates the local magnetic moments of Cr atoms. The adsorption of metal atoms increases the local magnetic moments of Cr atoms, but not exceeding 4μB. However, the adsorption of non-metallic atoms makes the local magnetic moments of Cr atoms diversified. The adsorption of O and N atoms retain the local magnetic moment of Cr atoms, while the adsorption of P and S atoms increase the local magnetic moment. By combining the projected density of states, we analyze in detail the local magnetic moments of Cr atoms. The increase of the local magnetic moments of Cr atoms is directly related to the charges transferring. Our results provide new ideas for regulating the performance of the magnetism of 2D intrinsic ferromagnetic semiconductor CrI3, which will have potential applications in the spintronics in the future.
      通信作者: 徐波, bxu4@mail.ustc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12064015)和中国福建能源器件科学与技术创新实验室开放基金(批准号: 21C-OP-202005)资助的课题
      Corresponding author: Xu Bo, bxu4@mail.ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12064015) and the Open Foundation of 21C Innovation Laboratory, Contemporary Amperex Technology Ltd, China (Grant No. 21C-OP-202005)
    [1]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [2]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401Google Scholar

    [3]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [4]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [5]

    Chen Q, Ouyang Y, Yuan S, Li R, Wang J 2014 ACS Appl. Mater. Inter. 6 16835Google Scholar

    [6]

    Dong L, Kumar H, Anasori B, Gogotsi Y, Shenoy V B 2017 J. Phys. Chem. Lett. 8 422Google Scholar

    [7]

    Ma X C, Wu X, Wang H D, Wang Y C 2018 J. Mater. Chem. A 6 2295Google Scholar

    [8]

    Kadantsev E S, Hawrylak P 2012 Solid State Commun. 152 909Google Scholar

    [9]

    Li F, Wei W, Zhao P, Huang B, Dai Y 2017 J. Phys. Chem. Lett. 8 5959Google Scholar

    [10]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [11]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [12]

    Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [13]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [14]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [15]

    Ghorbani-Asl M, Kuc A, Miro P, Heine T 2016 Adv. Mater. 28 853Google Scholar

    [16]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [17]

    Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D 2015 Nat. Nanotechnol. 10 227Google Scholar

    [18]

    Ma L, Dai J, Zeng X C 2017 Adv. Energy Mater. 7Google Scholar

    [19]

    Jing Y, Zhou Z, Cabrera C R, Chen Z 2014 J. Mater. Chem. A 2Google Scholar

    [20]

    Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari A C, Ruoff R S, Pellegrini V 2015 Science 347 1246501Google Scholar

    [21]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270Google Scholar

    [22]

    Zhang W B, Qu Q, Zhu P, Lam C H 2015 J. Mater. Chem. C 3 12457Google Scholar

    [23]

    Fu Y K, Sun Y, Luo X 2019 J. Appl. Phys. 125 053901Google Scholar

    [24]

    Wang H B, Fan F R, Zhu S S, Wu H 2016 Europhys. Lett. 114 47001Google Scholar

    [25]

    McGuire M A, Dixit H, Cooper V R, Sales B C 2015 Chem. Mater. 27 612Google Scholar

    [26]

    Webster L, Liang L, Yan J A 2018 Phys. Chem. Chem. Phys. 20 23546Google Scholar

    [27]

    Larson D T, Kaxiras E 2018 Phys. Rev. B 98 085406Google Scholar

    [28]

    Shcherbakov D, Stepanov P, Weber D, Wang Y, Hu J, Zhu Y, Watanabe K, Taniguchi T, Mao Z, Windl W, Goldberger J, Bockrath M, Lau C N 2018 Nano Lett. 18 4214Google Scholar

    [29]

    Chen L B, Chung J H, Gao B, Chen T, Stone M B, Kolesnikov A I, Huang Q Z, Dai P C 2018 Phys. Rev. X 8 041028Google Scholar

    [30]

    Zeng Y, Wang L, Li S, He C, Zhong D, Yao D X 2019 J. Phys. Codens. Mat. 31 395502Google Scholar

    [31]

    Zhou Y G, Wang Z G, Yang P, Zu X T, Yang L, Sun X, Gao F 2012 ACS Nano 6 9727Google Scholar

    [32]

    Zhu S Z, Li T 2016 Phys. Rev. B 93 115401Google Scholar

    [33]

    吴木生, 徐波, 刘刚, 欧阳楚英 2012 61 227102Google Scholar

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102Google Scholar

    [34]

    Rai H M, Saxena S K, Mishra V, Late R, Kumar R, Sagdeo P R, Jaiswal N K, Srivastava P 2016 RSC Adv. 6 11014Google Scholar

    [35]

    Osada M, Yoguchi S, Itose M, Li B W, Ebina Y, Fukuda K, Kotani Y, Ono K, Ueda S, Sasaki T 2014 Nanoscale 6 14227Google Scholar

    [36]

    Guan J, Yu G, Ding X, Chen W, Shi Z, Huang X, Sun C 2013 Chemphyschem. 14 2841Google Scholar

    [37]

    Du A J, Chen Y, Zhu Z H, Amal R, Lu G Q, Smith S C 2009 J. Am. Chem. Soc. 131 17354Google Scholar

    [38]

    黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎 2019 68 246301Google Scholar

    Huang B Q, Zhou T G, Wu D X, Zhang Z F, Li B K 2019 Acta Phys. Sin. 68 246301Google Scholar

    [39]

    Kan E, Li M, Hu S, Xiao C, Xiang H, Deng K 2013 J. Phys. Chem. Lett. 4 1120Google Scholar

    [40]

    Barone V, Peralta J E 2008 Nano Lett. 8 2210Google Scholar

    [41]

    Allen M J, Tung V C, Kaner R B 2010 J. Am. Chem. Soc. 110 132Google Scholar

    [42]

    Lee K W, Lee C E 2012 Adv. Mater. 24 2019Google Scholar

    [43]

    栾晓玮, 孙建平, 王凡嵩, 韦慧兰, 胡艺凡 2019 68 026802Google Scholar

    Luan X W, Sun J P, Wang F S, Wei H L, Hu Y F 2019 Acta Phys. Sin. 68 026802Google Scholar

    [44]

    杨光敏, 梁志聪, 黄海华 2017 66 057301Google Scholar

    Yang G M, Liang Z C, Huang H H 2017 Acta Phys. Sin. 66 057301Google Scholar

    [45]

    Zheng F W, Zhao J Z, Liu Z, Li M L, Zhou M, Zhang S B, Zhang P 2018 Nanoscale 10 14298Google Scholar

    [46]

    Gao Y, Wang J, Li Z P, Yang J J, Xia M R, Hao X F, Xu Y H, Gao F M 2019 Phys. Status. Solidi-R. 13 1800410Google Scholar

    [47]

    Qin W J, Xu B, Liao S S, Liu G, Sun B Z, Wu M S 2020 Solid State Commun. 321 114037Google Scholar

    [48]

    Liu J, Shi M C, Lu J W, Anantram M P 2018 Phys. Rev. B 97 054416Google Scholar

    [49]

    Guo Y L, Yuan S J, Wang B, Shi L, Wang J L 2018 J. Mater. Chem. C 6 5716Google Scholar

    [50]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [51]

    Kresse G, Hafner J 1994 Phys. Rev. B: Condens. Matter 49 14251Google Scholar

    [52]

    Kresse G, Furthmiiller J 1996 Science 6 15

    [53]

    Blochl P E 1994 Phys. Rev. B: Condens. Matter 50 17953Google Scholar

    [54]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [55]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [56]

    Perdew J P, Ernzerhof M, Burke K 1996 J. Chem. Phys. 105 9982Google Scholar

    [57]

    Liechtenstein A I, Anisimov V V, Zaanen J 1995 Phys. Rev. B: Condens. Matter 52 R5467Google Scholar

    [58]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [59]

    Goodenough J B 1958 J. Phys. Chem. Solids 6 287Google Scholar

    [60]

    Anderson P W 1959 Phys. Rev. 115 2Google Scholar

  • 图 1  (a) CrI3单层的原子结构俯视图(3个不同的吸附位用黑色的虚线圆圈表示); (b) CrI3单层的原子结构侧视图(上图中红色球为3个不同的吸附位, 下图中红色球为原子在吸附位3处吸附后的原子优化位置); (c) 四种不同的磁构型结构

    Fig. 1.  (a) Top view of atomic structure diagram of CrI3 monolayer (three different adsorption sites are represented by black dashed circle); (b) side view of atomic structure diagram of CrI3 monolayer (three different adsorption sites are shown with red balls in the top picture, and the optimized site of adsorption atom is shown with red ball in the bottom picture); (c) four different magnetic configurations.

    图 2  完美CrI3单层的 (a) 能态密度(红色实线表示Cr-d轨道的分波态密度, 蓝色实线表示I-p轨道的分波态密度)和 (b) 能带结构(红色实线表示上自旋电子的能带, 蓝色虚线表示下自旋电子的能带)

    Fig. 2.  (a) Energy density of states (red solid line for Cr-d projected density of states, blue solid line for I-p projected density of states) and (b) band structure (red solid line for spin up, blue dashed line for spin down) of perfect CrI3 monolayer.

    图 3  碱(土)金属原子吸附的CrI3单层的能带结构(红色实线表示上自旋电子的能带, 蓝色虚线表示下自旋电子的能带)

    Fig. 3.  Band structure of the CrI3 monolayer adsorbed by alkali (alkali earth) metal atoms (red solid line for spin up, blue dashed line for spin down).

    图 4  碱(土)金属原子吸附的CrI3单层中Cr原子的分波态密度

    Fig. 4.  Projected density of states (PDOS) of Cr atoms in CrI3 monolayer adsorbed by alkali (alkali earth) metal atoms.

    图 5  过渡金属原子吸附的CrI3单层的能带结构(红色实线表示上自旋电子的能带, 蓝色虚线表示下自旋电子的能带)

    Fig. 5.  Band structure of the CrI3 monolayer adsorbed by alkali (alkali earth) metal atoms (red solid line for spin up, blue dashed line for spin down).

    图 6  过渡金属原子吸附的CrI3单层中Cr原子的分波态密度

    Fig. 6.  Projected density of states (PDOS) of Cr atoms in CrI3 monolayer adsorbed by transition metal atoms.

    图 7  非金属原子吸附的CrI3单层的能带结构(红色实线表示上自旋电子的能带, 蓝色虚线表示下自旋电子的能带)

    Fig. 7.  Band structure of the CrI3 monolayer adsorbed by non-metal atoms (red solid line for spin up, blue dashed line for spin down).

    图 8  非金属原子吸附的CrI3单层中Cr原子的分波态密度

    Fig. 8.  Projected density of states (PDOS) of Cr atoms in CrI3 monolayer adsorbed by non-metal atoms.

    表 1  各种原子位于不同吸附位的CrI3单层优化后的体系能量(E )

    Table 1.  Energies (E ) of the optimized CrI3 monolayer with various atoms adsorbed at different sites.

    原子E位置1/eVE位置2/eVE位置3/eV
    Li–32.147–31.308–32.152
    K–31.411–30.634–31.430
    Mg–32.156–31.267–32.173
    Ti–35.245–35.472
    V–35.293–34.067–36.513
    Mn–36.923–35.369–36.937
    Fe–31.450–33.560–34.959
    Co–30.225–31.895–33.242
    Ni–29.182–30.606–31.603
    N–31.274–32.801–33.337
    P–31.362–31.664–31.798
    O–32.233–33.183–33.240
    S–30.657–30.155–30.887
    下载: 导出CSV

    表 2  碱(土)金属原子吸附后的CrI3单层的能量(E )和Cr原子的局域磁矩(MCr)

    Table 2.  Energy (E ) and local magnetic moments (MCr) of CrI3 monolayer adsorbed by alkali (alkaline earth) metal atoms.

    原子E/meVMCr/μB
    铁磁反铁磁
    Li059(4, 3)
    K052(4, 3)
    Mg06(4, 4)
    下载: 导出CSV

    表 3  过渡金属原子吸附后的CrI3单层的能量(E )和Cr原子的局域磁矩(MCr)

    Table 3.  Energy (E ) and local magnetic moments (MCr) of CrI3 monolayer adsorbed by transition metal atoms.

    原子E/meVMCr/μB
    Type ⅠType ⅡType ⅢType Ⅳ
    Ti5700120(4, –4)
    V0223022(4, 4)
    Mn370380(4, –4)
    Fe4014014(4, 4)
    Co4140035(4, 4)
    Ni6738038(4, 4)
    下载: 导出CSV

    表 4  非金属原子吸附后的CrI3单层的能量(E )和Cr原子的局域磁矩(MCr)

    Table 4.  Energy (E ) and local magnetic moments (MCr) of CrI3 monolayer adsorbed by non-metal atoms.

    原子E/meVMCr/μB
    Type ⅠType ⅡType ⅢType Ⅳ
    N0633763(3, 3)
    P029(4.5, 4.5)
    O089(3, 3)
    S21071071(4, 4)
    下载: 导出CSV
    Baidu
  • [1]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [2]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401Google Scholar

    [3]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [4]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [5]

    Chen Q, Ouyang Y, Yuan S, Li R, Wang J 2014 ACS Appl. Mater. Inter. 6 16835Google Scholar

    [6]

    Dong L, Kumar H, Anasori B, Gogotsi Y, Shenoy V B 2017 J. Phys. Chem. Lett. 8 422Google Scholar

    [7]

    Ma X C, Wu X, Wang H D, Wang Y C 2018 J. Mater. Chem. A 6 2295Google Scholar

    [8]

    Kadantsev E S, Hawrylak P 2012 Solid State Commun. 152 909Google Scholar

    [9]

    Li F, Wei W, Zhao P, Huang B, Dai Y 2017 J. Phys. Chem. Lett. 8 5959Google Scholar

    [10]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [11]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [12]

    Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [13]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [14]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [15]

    Ghorbani-Asl M, Kuc A, Miro P, Heine T 2016 Adv. Mater. 28 853Google Scholar

    [16]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [17]

    Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D 2015 Nat. Nanotechnol. 10 227Google Scholar

    [18]

    Ma L, Dai J, Zeng X C 2017 Adv. Energy Mater. 7Google Scholar

    [19]

    Jing Y, Zhou Z, Cabrera C R, Chen Z 2014 J. Mater. Chem. A 2Google Scholar

    [20]

    Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari A C, Ruoff R S, Pellegrini V 2015 Science 347 1246501Google Scholar

    [21]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270Google Scholar

    [22]

    Zhang W B, Qu Q, Zhu P, Lam C H 2015 J. Mater. Chem. C 3 12457Google Scholar

    [23]

    Fu Y K, Sun Y, Luo X 2019 J. Appl. Phys. 125 053901Google Scholar

    [24]

    Wang H B, Fan F R, Zhu S S, Wu H 2016 Europhys. Lett. 114 47001Google Scholar

    [25]

    McGuire M A, Dixit H, Cooper V R, Sales B C 2015 Chem. Mater. 27 612Google Scholar

    [26]

    Webster L, Liang L, Yan J A 2018 Phys. Chem. Chem. Phys. 20 23546Google Scholar

    [27]

    Larson D T, Kaxiras E 2018 Phys. Rev. B 98 085406Google Scholar

    [28]

    Shcherbakov D, Stepanov P, Weber D, Wang Y, Hu J, Zhu Y, Watanabe K, Taniguchi T, Mao Z, Windl W, Goldberger J, Bockrath M, Lau C N 2018 Nano Lett. 18 4214Google Scholar

    [29]

    Chen L B, Chung J H, Gao B, Chen T, Stone M B, Kolesnikov A I, Huang Q Z, Dai P C 2018 Phys. Rev. X 8 041028Google Scholar

    [30]

    Zeng Y, Wang L, Li S, He C, Zhong D, Yao D X 2019 J. Phys. Codens. Mat. 31 395502Google Scholar

    [31]

    Zhou Y G, Wang Z G, Yang P, Zu X T, Yang L, Sun X, Gao F 2012 ACS Nano 6 9727Google Scholar

    [32]

    Zhu S Z, Li T 2016 Phys. Rev. B 93 115401Google Scholar

    [33]

    吴木生, 徐波, 刘刚, 欧阳楚英 2012 61 227102Google Scholar

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102Google Scholar

    [34]

    Rai H M, Saxena S K, Mishra V, Late R, Kumar R, Sagdeo P R, Jaiswal N K, Srivastava P 2016 RSC Adv. 6 11014Google Scholar

    [35]

    Osada M, Yoguchi S, Itose M, Li B W, Ebina Y, Fukuda K, Kotani Y, Ono K, Ueda S, Sasaki T 2014 Nanoscale 6 14227Google Scholar

    [36]

    Guan J, Yu G, Ding X, Chen W, Shi Z, Huang X, Sun C 2013 Chemphyschem. 14 2841Google Scholar

    [37]

    Du A J, Chen Y, Zhu Z H, Amal R, Lu G Q, Smith S C 2009 J. Am. Chem. Soc. 131 17354Google Scholar

    [38]

    黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎 2019 68 246301Google Scholar

    Huang B Q, Zhou T G, Wu D X, Zhang Z F, Li B K 2019 Acta Phys. Sin. 68 246301Google Scholar

    [39]

    Kan E, Li M, Hu S, Xiao C, Xiang H, Deng K 2013 J. Phys. Chem. Lett. 4 1120Google Scholar

    [40]

    Barone V, Peralta J E 2008 Nano Lett. 8 2210Google Scholar

    [41]

    Allen M J, Tung V C, Kaner R B 2010 J. Am. Chem. Soc. 110 132Google Scholar

    [42]

    Lee K W, Lee C E 2012 Adv. Mater. 24 2019Google Scholar

    [43]

    栾晓玮, 孙建平, 王凡嵩, 韦慧兰, 胡艺凡 2019 68 026802Google Scholar

    Luan X W, Sun J P, Wang F S, Wei H L, Hu Y F 2019 Acta Phys. Sin. 68 026802Google Scholar

    [44]

    杨光敏, 梁志聪, 黄海华 2017 66 057301Google Scholar

    Yang G M, Liang Z C, Huang H H 2017 Acta Phys. Sin. 66 057301Google Scholar

    [45]

    Zheng F W, Zhao J Z, Liu Z, Li M L, Zhou M, Zhang S B, Zhang P 2018 Nanoscale 10 14298Google Scholar

    [46]

    Gao Y, Wang J, Li Z P, Yang J J, Xia M R, Hao X F, Xu Y H, Gao F M 2019 Phys. Status. Solidi-R. 13 1800410Google Scholar

    [47]

    Qin W J, Xu B, Liao S S, Liu G, Sun B Z, Wu M S 2020 Solid State Commun. 321 114037Google Scholar

    [48]

    Liu J, Shi M C, Lu J W, Anantram M P 2018 Phys. Rev. B 97 054416Google Scholar

    [49]

    Guo Y L, Yuan S J, Wang B, Shi L, Wang J L 2018 J. Mater. Chem. C 6 5716Google Scholar

    [50]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [51]

    Kresse G, Hafner J 1994 Phys. Rev. B: Condens. Matter 49 14251Google Scholar

    [52]

    Kresse G, Furthmiiller J 1996 Science 6 15

    [53]

    Blochl P E 1994 Phys. Rev. B: Condens. Matter 50 17953Google Scholar

    [54]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [55]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [56]

    Perdew J P, Ernzerhof M, Burke K 1996 J. Chem. Phys. 105 9982Google Scholar

    [57]

    Liechtenstein A I, Anisimov V V, Zaanen J 1995 Phys. Rev. B: Condens. Matter 52 R5467Google Scholar

    [58]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [59]

    Goodenough J B 1958 J. Phys. Chem. Solids 6 287Google Scholar

    [60]

    Anderson P W 1959 Phys. Rev. 115 2Google Scholar

  • [1] 王娜, 许会芳, 杨秋云, 章毛连, 林子敬. 单层CrI3电荷输运性质和光学性质应变调控的第一性原理研究.  , 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [2] 李发云, 杨志雄, 程雪, 甄丽营, 欧阳方平. 单层缺陷碲烯电子结构与光学性质的第一性原理研究.  , 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [3] 侯璐, 童鑫, 欧阳钢. 一维carbyne链原子键性质应变调控的第一性原理研究.  , 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [4] 陈国祥, 樊晓波, 李思琦, 张建民. 碱金属和碱土金属掺杂二维GaN材料电磁特性的第一性原理计算.  , 2019, 68(23): 237303. doi: 10.7498/aps.68.20191246
    [5] 付现凯, 陈万骐, 姜钟生, 杨波, 赵骧, 左良. Ti3O5弹性、电子和光学性质的第一性原理研究.  , 2019, 68(20): 207301. doi: 10.7498/aps.68.20190664
    [6] 胡洁琼, 谢明, 陈家林, 刘满门, 陈永泰, 王松, 王塞北, 李爱坤. Ti3AC2相(A = Si,Sn,Al,Ge)电子结构、弹性性质的第一性原理研究.  , 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [7] 黄鳌, 卢志鹏, 周梦, 周晓云, 陶应奇, 孙鹏, 张俊涛, 张廷波. Al和O间隙原子对-Al2O3热力学性质影响的第一性原理计算.  , 2017, 66(1): 016103. doi: 10.7498/aps.66.016103
    [8] 赵佰强, 张耘, 邱晓燕, 王学维. Cu,Fe掺杂LiNbO3晶体电子结构和光学性质的第一性原理研究.  , 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [9] 刘峰斌, 陈文彬, 崔岩, 屈敏, 曹雷刚, 杨越. 活性质吸附氢修饰金刚石表面的第一性原理研究.  , 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [10] 张理勇, 方粮, 彭向阳. 金衬底调控单层二硫化钼电子性能的第一性原理研究.  , 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [11] 骆最芬, 岑伟富, 范梦慧, 汤家俊, 赵宇军. BiTiO3电子结构及光学性质的第一性原理研究.  , 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [12] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算.  , 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [13] 李国旗, 张小超, 丁光月, 樊彩梅, 梁镇海, 韩培德. BiOCl{001}表面原子与电子结构的第一性原理研究.  , 2013, 62(12): 127301. doi: 10.7498/aps.62.127301
    [14] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究.  , 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [15] 杨春燕, 张蓉, 张利民, 可祥伟. 0.5NdAlO3-0.5CaTiO3电子结构及光学性质的第一性原理计算.  , 2012, 61(7): 077702. doi: 10.7498/aps.61.077702
    [16] 卢金炼, 曹觉先. 单个钛原子储氢能力和储氢机制的第一性原理研究.  , 2012, 61(14): 148801. doi: 10.7498/aps.61.148801
    [17] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究.  , 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [18] 房丽敏. SrTiO3(001)表面上Au和N原子相互作用的第一性原理研究.  , 2011, 60(5): 056801. doi: 10.7498/aps.60.056801
    [19] 李世娜, 刘永. Cu3N弹性和热力学性质的第一性原理研究.  , 2010, 59(10): 6882-6888. doi: 10.7498/aps.59.6882
    [20] 倪建刚, 刘 诺, 杨果来, 张 曦. 第一性原理研究BaTiO3(001)表面的电子结构.  , 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
计量
  • 文章访问数:  6109
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-14
  • 修回日期:  2021-02-14
  • 上网日期:  2021-05-28
  • 刊出日期:  2021-06-05

/

返回文章
返回
Baidu
map