搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

B2-和B19'-NiTi表面原子弛豫、表面能、电子结构及性能的理论研究

陈璐 李烨飞 郑巧玲 刘庆坤 高义民 李博 周长猛

引用本文:
Citation:

B2-和B19'-NiTi表面原子弛豫、表面能、电子结构及性能的理论研究

陈璐, 李烨飞, 郑巧玲, 刘庆坤, 高义民, 李博, 周长猛

Theoretical study of atomic relaxation, surface energy, electronic structure and properties of B2- and B19'-NiTi surfaces

Chen Lu, Li Ye-Fei, Zheng Qiao-Ling, Liu Qing-Kun, Gao Yi-Min, Li Bo, Zhou Chang-Meng
PDF
HTML
导出引用
  • 采用基于密度泛函理论的第一性原理系统研究了B2-和B19'-NiTi合金所有低指数表面的表面能、表面结构稳定性、表面电子结构等性质. 计算结果表明两种NiTi合金所有低指数表面的原子弛豫主要集中在表面2—3个原子层, 且以Ti原子为终止原子表面构型的原子振荡最为剧烈, Ni和Ti原子共同终止表面构型的原子振荡最小; 价电荷密度沿着表面构型向真空层方向快速衰减; 表面能计算结果显示其与配位数成反相关. B2-和B19'-NiTi合金的非密排且非化学计量比表面的表面能取决于Ti的化学势, 表面能数值较高; 而密排面的表面构型符合化学计量比, 其表面能较低, 表现出卓越的化学稳定性; 其中以B2-NiTi(101)密排面的表面稳定性最优.
    NiTi shape memory alloy has been widely used in industrial and biological fields due to its excellent mechanical properties, unique shape memory effect and superelasticity. In this paper, the atomic relaxation, thermodynamic energy, structural stability, electronic structures and other properties of all low-index surfaces of B2- and B19'-NiTi alloys are systematically studied by using the first principles calculations based on density functional theory. The calculated results show that the atomic relaxations on all low-index surfaces of both B2- and B19'-NiTi alloys are mainly concentrated in 2−3 atomic layers on the surface, which means that the surface effect is mainly confined in two or three layers on the surface configuration. In addition, the atomic relaxation of Ti-terminated surface is most remarkable, and followed by Ni-terminated surface, while the atomic relaxation of Ni&Ti-terminated surface is insignificant. Furthermore, the valence charge density decays rapidly from the surface configuration to the vacuum layer.  The calculation results of surface energy show that surface energy is inversely related to the coordinate number, and surface stability increases with the coordination number increasing. For B2- and B19'-NiTi, the surface energy of non-dense and non-stoichiometric surface depend on the chemical potential of Ti, and the surface energy is high. Therefore, the stabilities of these surfaces change with the chemical potential of Ti increasing. However, the surface energy values of dense surface configurations with stoichiometric ratio for B2-NiTi (101) and B19'-NiTi (010) are 1.81 J/m2 and 1.93 J/m2, respectively, which are both lower than those for other non-dense surfaces in the most Ti chemical potentials range, showing excellent structural stability. Moreover, the electron density analysis indicates that the dominant bonding for B2-NiTi (101) surface is the chained Ni-Ti-Ni metallic bond, the distribution of electrons and the distance between Ni and Ti atoms on the B2-NiTi (101) surface are more uniform and smaller, respectively, than those for B19'-NiTi (010) surface. In summary, the B2-NiTi (101) surface shows the high stability.
      通信作者: 李烨飞, liyefei@xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51501139)、陕西省自然科学基金(批准号: 2018JM5002)、广西创新驱动发展专项(批准号: 桂科AA18242001)、广东省科技计划(批准号: 2015B010122003)、广州市科技计划(批准号: 201604046009)和中国博士后科学基金(批准号: 2018M631152, 2018T111051)资助的课题.
      Corresponding author: Li Ye-Fei, liyefei@xjtu.edu.cn
    • Funds: Projects supported by the National Natural Science Foundation of China (Grant No. 51501139), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2018JM5002), the Guangxi Innovation Driven Development Project, China (Grant No. GUIKEAA18242001), the Science and Technology Project Fund of Guangdong Province, China (Grant No. 2015B010122003), the Guangzhou Science and Technology Project Fund, China (Grant No.201604046009), and the China Postdoctoral Science Foundation (Grant Nos. 2018M631152, 2018T111051).
    [1]

    马蕾, 王旭, 尚家香 2014 63 233103Google Scholar

    Ma L, Wang X, Shang J X 2014 Acta Phys. Sin. 63 233103Google Scholar

    [2]

    吴红丽, 赵新青, 宫声凯 2010 59 515Google Scholar

    Wu H L, Zhao X Q, Gong S K 2010 Acta Phys. Sin. 59 515Google Scholar

    [3]

    Wagner M F X, Windl W 2008 Acta. Mater. 56 6232Google Scholar

    [4]

    Huang X Y, Bungaro C, Godlevsky V, Rabe K M 2001 Phys. Rev. B 65 014108Google Scholar

    [5]

    Fukuda T, Kakeshita T, Houjoh H, Shiraishi S, Saburi T 1999 Mater. Sci. Eng. A 273−275 166

    [6]

    贾堤, 董治中, 于申军, 刘文西 1998 原子与分子 15 421

    Jia D, Dong Z Z, Yu S J, Liu W X 1998 J. Atom. Mol. Phys. Sin. 15 421

    [7]

    姜振益, 李盛涛 2006 55 6032Google Scholar

    Jiang Z Y, Li S T 2006 Acta Phys. Sin. 55 6032Google Scholar

    [8]

    Hua Y J, Liu X, Meng C G, Yang D Z 2003 J. Wuhan. Univ. Technol. 18 6

    [9]

    朱建新, 李永华, 孟繁玲, 刘常升, 郑伟涛, 王煜明 2008 57 7204Google Scholar

    Zhu J X, Li Y H, Meng F L, Liu C S, Zheng W T, Wang Y M 2008 Acta Phys. Sin. 57 7204Google Scholar

    [10]

    单迪, 何鑫玉, 方长青, 邵晖 2015 材料导报A: 综述篇 29 28

    Shan D, He X Y, Fang C Q, Shao H 2015 Mater. Rev. A 29 28

    [11]

    尹大宇, 朱锦宇, 段永宏, 李矛, 韩建业, 朱庆生 2011 华南国防医学杂志 25 52

    Yin D Y, Zhu J Y, Duan Y H, Li M, Han J Y, Zhu Q S 2011 Milit. Medi. J. Sou. China 25 52

    [12]

    孔祥确, 金学军, 刘剑楠 2016 功能材料 47 1007Google Scholar

    Kong X Q, Jin X J, Liu J N 2016 Func. Mater. 47 1007Google Scholar

    [13]

    邵明增, 崔春娟, 杨洪波 2018 材料导报A: 综述篇 32 1181

    Shao M Z, Cui C J, Yang H B 2018 Mater. Rev. A 32 1181

    [14]

    杨贤金, 朱胜利, 崔振铎, 姚康德 2001 功能材料 32 154Google Scholar

    Yang X J, Zhu S L, Cui Z D, Yao K D 2001 Func. Mater. 32 154Google Scholar

    [15]

    Qiu D L, Wang A P, Yin Y S 2010 Appl. Surf. Sci. 257 1774Google Scholar

    [16]

    Li Y F, Tang S L, Gao Y M, Ma S Q, Zheng Q L, Cheng Y H 2017 Int. J. Mod. Phys. B 31 1750161Google Scholar

    [17]

    Nigussa K N, Støvneng J A 2011 Comput. Phys. Commun. 182 1979Google Scholar

    [18]

    Vishnu K G, Strachan A 2012 Phys. Rev. B 85 014114Google Scholar

    [19]

    Sandoval L, Haskins J B, Lawson J W 2018 Acta Mater. 154 182Google Scholar

    [20]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [21]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768Google Scholar

    [22]

    Li G F, Zheng H Z, Shu X Y, Peng P 2016 Met. Mater. Int. 22 69Google Scholar

    [23]

    Pfetzing-Micklich J, Somsen C, Dlouhy A, Begau C, Hartmaier A, Wagner M F X, Eggeler G 2013 Acta Mater. 61 602Google Scholar

    [24]

    Mercier O, Melton K N, Gremaud G, Häji J 1980 J. Appl. Phys. 51 1833Google Scholar

    [25]

    Hatcher N, Kontsevoi O Y, Freeman A J 2009 Phys. Rev. B 80 144203Google Scholar

    [26]

    Sestak P, Cerny M, Pokluda J 2008 Strength. Mater. 40 12Google Scholar

    [27]

    Sedlak P, Frost M, Kruisova A, Hirmanova K, Heller L, Sittner P 2014 J.Mater. Eng. Perf. 23 2591Google Scholar

    [28]

    Zeng Z Y, Hu C E, Cai L C, Chen X R, Jing F Q 2010 Physica B 405 3665Google Scholar

    [29]

    Fiorentini V, Methfessel M 1996 J. Phys-Condens. Mat. 8 6525Google Scholar

    [30]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [31]

    Lazzeri M, Vittadini A, Selloni A 2001 Phys. Rev. B 63 155409Google Scholar

  • 图 1  NiTi合金的低指数表面原子构型 (a) B2-NiTi(101)_NiTi; (b) B2-NiTi_Ni; (100); (c) B2-NiTi(111)_Ni; (d) B19’-NiTi(010)_NiTi; (e) B19'-NiTi(001)_Ni; (f) B19'-NiTi(110)_Ni; 绿色球和黑色球分别代表Ni, Ti原子

    Fig. 1.  Atomic low-index surface configurations of NiTi alloy: (a) B2-NiTi(101)_NiTi; (b) B2-NiTi(100)_Ni; (c) B2-NiTi(111)_Ni; (d) B19’-NiTi(010)_NiTi; (e) B19'-NiTi(001)_Ni; (f) B19'-NiTi(110)_Ni.

    图 2  NiTi合金的DOS曲线 (a)B2-NiTi; (b)B19'-NiTi

    Fig. 2.  DOS curves for NiTi alloys: (a) B2-NiTi; (b) B19'-NiTi.

    图 3  富Ti条件下表面能随表面构型原子层数目变化曲线 (a) B2-NiTi; (b) B19'-NiTi

    Fig. 3.  Under the condition of Ti-rich, the surface energy varies with the number of atomic layers of the surface configuration: (a) B2-NiTi; (b) B19'-NiTi.

    图 4  B2-NiTi和B19'-NiTi体相密排面的电荷密度分布 (a) B2-NiTi (101); (b) B19'-NiTi (010)

    Fig. 4.  Charge density distribution of dense plane of bulk B2-NiTi and B19'-NiTi: (a) B2-NiTi (101); (b) B19'-NiTi (010).

    图 5  非化学计量比表面的表面能随Ti化学势的变化 (a) B2-NiTi; (b) B19'-NiTi

    Fig. 5.  Surface energies of non-stoichiometric surface versus Ti chemical potentials: (a) B2-NiTi; (b) B19'-NiTi.

    图 6  B2-和B19'-NiTi体相总DOS和表面构型层投影DOS曲线 (a) B2-NiTi (100)_Ni; (b) B19'-NiTi (010)_NiTi; (c) B2-NiTi (101)_NiTi; (d) B19'-NiTi (101)_Ni; (e) B2-NiTi (111)_Ni; (f) B19'-NiTi (111)_Ni

    Fig. 6.  Total DOS of B2 and B19'-NiTi body phase and surface configurations layer projected DOS curves: (a) B2-NiTi (100)_Ni; (b) B19'-NiTi (010)_NiTi; (c) B2-NiTi (101)_NiTi; (d) B19'-NiTi (101)_Ni; (e) B2-NiTi (111)_Ni; (f) B19'-NiTi (111)_Ni.

    图 7  B2-和B19'-NiTi表面构型总电子密度分布 (a) B2-NiTi (101)_NiTi; (b) B2-NiTi (111)_Ni; (c) B19'-NiTi (010)_NiTi; (d) B19'-NiTi (101)_Ni

    Fig. 7.  Total electron density distribution of B2- and B19'-NiTi surface configurations: (a) B2-NiTi (101)_NiTi; (b) B2-NiTi (111)_Ni; (c) B19'-NiTi (010)_NiTi; (d) B19'-NiTi (101)_Ni.

    表 1  NiTi合金的晶格常数、密度、剪切模量、体模量及生成焓

    Table 1.  Calculated cell parameters, density, shear modulus, bulk modulus and formation enthalpy.

    CompoundsabcV3G/MPaB/MPa${\Delta _{\rm{r}}}H$/eV·atom–1
    B2-NiTi3.015 (3.033a, 3.016b, 3.01c)27.402 (27.901a, 27.434b, 27.27c)69.0 (73d)155.5 (142.3a, 150.0b, 142e)–0.374 (–0.35f)
    B19'-NiTi4.646 (4.685g, 4.813h, 4.631i)4.108 (4.035g, 4.121h, 4.10i)2.898 (2.941g, 3.007h, 2.885i)55.705 (55.080g, 58.610h, 54.84i)26.2 (23j)148.9 (147k, 158f)–0.328
    注: a, b, d, g, h, j, k为理论参考值, Ref.[21-22,23,3,26,27-28]; c, 实验参考值, Inorganic Crystal Structure Database (ICSD) #105413; e, 实验参考值Ref.[24]; f, 实验参考值, Ref.[25]; i, 实验参考值, ICSD #240195.
    下载: 导出CSV

    表 2  B2-NiTi表面原子层位移相对体相间距的变化率随切片厚度的变化 (%)

    Table 2.  Relaxations of B2-NiTi surfaces with different terminations and slab thickness given in terms of the change of interlayer spacing in percent of the bulk spacing (%).

    SurfaceTerminationInterlayerSlab thickness
    357911
    (101)Ni, Ti${\varDelta _{12}}$–9.67–10.42–9.99–9.88–9.91
    ${\varDelta _{23}}$–0.191.181.991.78
    ${\varDelta _{34}}$–0.83–0.65–0.47
    ${\varDelta _{45}}$0.431.15
    ${\varDelta _{56}}$0.57
    (100)Ni${\varDelta _{12}}$–1.77–8.13–8.89–8.78–8.93
    ${\varDelta _{23}}$3.853.482.792.76
    ${\varDelta _{34}}$–0.72–0.410.17
    ${\varDelta _{45}}$1.11–0.37
    ${\varDelta _{56}}$2.18
    Ti${\varDelta _{12}}$–2.24–21.68–17.08–15.16–16.68
    ${\varDelta _{23}}$15.4212.147.1110.78
    ${\varDelta _{34}}$0.014.032.82
    ${\varDelta _{45}}$–5.72–1.93
    ${\varDelta _{56}}$1.53
    下载: 导出CSV
    Baidu
  • [1]

    马蕾, 王旭, 尚家香 2014 63 233103Google Scholar

    Ma L, Wang X, Shang J X 2014 Acta Phys. Sin. 63 233103Google Scholar

    [2]

    吴红丽, 赵新青, 宫声凯 2010 59 515Google Scholar

    Wu H L, Zhao X Q, Gong S K 2010 Acta Phys. Sin. 59 515Google Scholar

    [3]

    Wagner M F X, Windl W 2008 Acta. Mater. 56 6232Google Scholar

    [4]

    Huang X Y, Bungaro C, Godlevsky V, Rabe K M 2001 Phys. Rev. B 65 014108Google Scholar

    [5]

    Fukuda T, Kakeshita T, Houjoh H, Shiraishi S, Saburi T 1999 Mater. Sci. Eng. A 273−275 166

    [6]

    贾堤, 董治中, 于申军, 刘文西 1998 原子与分子 15 421

    Jia D, Dong Z Z, Yu S J, Liu W X 1998 J. Atom. Mol. Phys. Sin. 15 421

    [7]

    姜振益, 李盛涛 2006 55 6032Google Scholar

    Jiang Z Y, Li S T 2006 Acta Phys. Sin. 55 6032Google Scholar

    [8]

    Hua Y J, Liu X, Meng C G, Yang D Z 2003 J. Wuhan. Univ. Technol. 18 6

    [9]

    朱建新, 李永华, 孟繁玲, 刘常升, 郑伟涛, 王煜明 2008 57 7204Google Scholar

    Zhu J X, Li Y H, Meng F L, Liu C S, Zheng W T, Wang Y M 2008 Acta Phys. Sin. 57 7204Google Scholar

    [10]

    单迪, 何鑫玉, 方长青, 邵晖 2015 材料导报A: 综述篇 29 28

    Shan D, He X Y, Fang C Q, Shao H 2015 Mater. Rev. A 29 28

    [11]

    尹大宇, 朱锦宇, 段永宏, 李矛, 韩建业, 朱庆生 2011 华南国防医学杂志 25 52

    Yin D Y, Zhu J Y, Duan Y H, Li M, Han J Y, Zhu Q S 2011 Milit. Medi. J. Sou. China 25 52

    [12]

    孔祥确, 金学军, 刘剑楠 2016 功能材料 47 1007Google Scholar

    Kong X Q, Jin X J, Liu J N 2016 Func. Mater. 47 1007Google Scholar

    [13]

    邵明增, 崔春娟, 杨洪波 2018 材料导报A: 综述篇 32 1181

    Shao M Z, Cui C J, Yang H B 2018 Mater. Rev. A 32 1181

    [14]

    杨贤金, 朱胜利, 崔振铎, 姚康德 2001 功能材料 32 154Google Scholar

    Yang X J, Zhu S L, Cui Z D, Yao K D 2001 Func. Mater. 32 154Google Scholar

    [15]

    Qiu D L, Wang A P, Yin Y S 2010 Appl. Surf. Sci. 257 1774Google Scholar

    [16]

    Li Y F, Tang S L, Gao Y M, Ma S Q, Zheng Q L, Cheng Y H 2017 Int. J. Mod. Phys. B 31 1750161Google Scholar

    [17]

    Nigussa K N, Støvneng J A 2011 Comput. Phys. Commun. 182 1979Google Scholar

    [18]

    Vishnu K G, Strachan A 2012 Phys. Rev. B 85 014114Google Scholar

    [19]

    Sandoval L, Haskins J B, Lawson J W 2018 Acta Mater. 154 182Google Scholar

    [20]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [21]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768Google Scholar

    [22]

    Li G F, Zheng H Z, Shu X Y, Peng P 2016 Met. Mater. Int. 22 69Google Scholar

    [23]

    Pfetzing-Micklich J, Somsen C, Dlouhy A, Begau C, Hartmaier A, Wagner M F X, Eggeler G 2013 Acta Mater. 61 602Google Scholar

    [24]

    Mercier O, Melton K N, Gremaud G, Häji J 1980 J. Appl. Phys. 51 1833Google Scholar

    [25]

    Hatcher N, Kontsevoi O Y, Freeman A J 2009 Phys. Rev. B 80 144203Google Scholar

    [26]

    Sestak P, Cerny M, Pokluda J 2008 Strength. Mater. 40 12Google Scholar

    [27]

    Sedlak P, Frost M, Kruisova A, Hirmanova K, Heller L, Sittner P 2014 J.Mater. Eng. Perf. 23 2591Google Scholar

    [28]

    Zeng Z Y, Hu C E, Cai L C, Chen X R, Jing F Q 2010 Physica B 405 3665Google Scholar

    [29]

    Fiorentini V, Methfessel M 1996 J. Phys-Condens. Mat. 8 6525Google Scholar

    [30]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [31]

    Lazzeri M, Vittadini A, Selloni A 2001 Phys. Rev. B 63 155409Google Scholar

  • [1] 周嘉健, 张宇文, 何朝宇, 欧阳滔, 李金, 唐超. 二维SiP2同素异构体结构预测及其电子性质的第一性原理研究.  , 2022, 71(23): 236101. doi: 10.7498/aps.71.20220853
    [2] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究.  , 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [3] 张硕鑫, 刘士余, 严达利, 余浅, 任海涛, 于彬, 李德军. Ta1–xHfxC和Ta1–xZrxC固溶体的结构稳定性和力学性质的第一性原理研究.  , 2021, 70(11): 117102. doi: 10.7498/aps.70.20210191
    [4] 张颖, 刘春生. 硅醚/石墨醚异质结构光电性质的理论研究.  , 2021, 70(12): 123102. doi: 10.7498/aps.70.20202193
    [5] 张小超, 管美画, 张启瑞, 张长明, 李瑞, 刘建新, 王雅文, 樊彩梅. 单原子Pt吸附于不同原子暴露终端BiOBr{001}面的第一性原理研究.  , 2021, 70(8): 087101. doi: 10.7498/aps.70.20201572
    [6] 罗雄, 孟威威, 陈国旭佳, 管晓溪, 贾双凤, 郑赫, 王建波. 二维Nb2SiTe4基化合物稳定性、电子结构和光学性质的第一性原理研究.  , 2020, 69(19): 197102. doi: 10.7498/aps.69.20200848
    [7] 左博敏, 袁健美, 冯志, 毛宇亮. 应力调控下二维硒化锗五种同分异构体的第一性原理研究.  , 2019, 68(11): 113103. doi: 10.7498/aps.68.20182266
    [8] 王丹, 邹娟, 唐黎明. 氢化二维过渡金属硫化物的稳定性和电子特性: 第一性原理研究.  , 2019, 68(3): 037102. doi: 10.7498/aps.68.20181597
    [9] 刘坤, 王福合, 尚家香. NiTi(110)表面氧原子吸附的第一性原理研究.  , 2017, 66(21): 216801. doi: 10.7498/aps.66.216801
    [10] 刘峰斌, 陈文彬, 崔岩, 屈敏, 曹雷刚, 杨越. 活性质吸附氢修饰金刚石表面的第一性原理研究.  , 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [11] 刘博, 王煊军, 卜晓宇. 高压下NH4ClO4结构、电子及弹性性质的第一性原理研究.  , 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [12] 陈庆玲, 戴振宏, 刘兆庆, 安玉凤, 刘悦林. 双层h-BN/Graphene结构稳定性及其掺杂特性的第一性原理研究.  , 2016, 65(13): 136101. doi: 10.7498/aps.65.136101
    [13] 杨建辉, 陈言星, 吴丽慧, 韦世豪. MC与Mn+1ACn稳定性与电子特征的第一性原理研究.  , 2014, 63(23): 237301. doi: 10.7498/aps.63.237301
    [14] 徐雷, 戴振宏, 王森, 刘兵, 孙玉明, 王伟田. 氟化硼碳平面的第一性原理研究.  , 2014, 63(10): 107102. doi: 10.7498/aps.63.107102
    [15] 冯小勤, 贾建明, 陈贵宾. 弯曲BN纳米片的电子性质及其调制.  , 2014, 63(3): 037101. doi: 10.7498/aps.63.037101
    [16] 李国旗, 张小超, 丁光月, 樊彩梅, 梁镇海, 韩培德. BiOCl{001}表面原子与电子结构的第一性原理研究.  , 2013, 62(12): 127301. doi: 10.7498/aps.62.127301
    [17] 舒瑜, 张研, 张建民. Cu 表面性质的第一性原理分析.  , 2012, 61(1): 016108. doi: 10.7498/aps.61.016108
    [18] 倪建刚, 刘 诺, 杨果来, 张 曦. 第一性原理研究BaTiO3(001)表面的电子结构.  , 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [19] 黄 晋, 孙其诚. 一维液态泡沫渗流实验研究及表面能和粘性耗散分析.  , 2007, 56(10): 6124-6131. doi: 10.7498/aps.56.6124
    [20] 张 超, 唐 鑫, 王永亮, 张庆瑜. 替位杂质对贵金属(111)表面稳定性影响的分子动力学研究.  , 2005, 54(12): 5791-5796. doi: 10.7498/aps.54.5791
计量
  • 文章访问数:  11030
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-01
  • 修回日期:  2018-12-25
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-05

/

返回文章
返回
Baidu
map