搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双层h-BN/Graphene结构稳定性及其掺杂特性的第一性原理研究

陈庆玲 戴振宏 刘兆庆 安玉凤 刘悦林

引用本文:
Citation:

双层h-BN/Graphene结构稳定性及其掺杂特性的第一性原理研究

陈庆玲, 戴振宏, 刘兆庆, 安玉凤, 刘悦林

First-principles study on the structure stability and doping performance of double layer h-BN/Graphene

Chen Qing-Ling, Dai Zhen-Hong, Liu Zhao-Qing, An Yu-Feng, Liu Yue-Lin
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理计算方法研究了双层h-BN/Graphene的稳定性及其掺杂特性. 研究发现, 双层h-BN/Graphene能带结构在K点处有一个小的带隙, 在费米能处有类Graphene的线性色散关系. 通过施加应变和掺杂来调节带隙, 发现掺杂后费米能级附近引入的新能级, 主要是N原子的贡献, 掺杂后的Na原子和N, C之间存在电荷转移, 材料转变为金属性. 电荷的转移、载流子密度的增加, 在电子元器件中有重要的应用前景.
    Using the firs-principles method based on density functional theory, we study the stability and doping performance of double h-BN/Graphene structure, here the exchange correlation potential is expressed through the local density approximation and the interactions between ions and electrons are described by the projective-augmented wave method. Because double layer h-BN/Graphene represents a kind of epitaxial semiconductor system, which can be applied to tunnel pressure sensor, the research is very meaningful. In order to improve the application of this special double layer structures, we often carry out the dopings of some atoms. Unlike previous research work, in which the dopings of the metals Au, Co, Mn and other atoms were took into account, we now mainly consider the dopings of the active metal atoms, such as the dopings of Li, Na, and K atoms. The band structure, electronic density of states, as well as the charge density and stability are studied on the double h-BN/Graphene structure after alkali metal doping. At the same time, bonding and electronic properties of double h-BN/Graphene are discussed under the different biaxial strain conditions. The results show that for the dopings of Li and K atoms, the structure deformation is very large, and the band structure of double h-BN/Graphene can show a small band gap at the K point in the first Brillouin zone, taking on a linear dispersion relation the same as that of the perfect graphene. We can tune the band gap by applying external strain and dopings of atoms, and find a new level appearing near the Fermi level after doping, which is mainly due to the contribution of N atoms. In addition, there exists charge transfer between Na atom and N and C atoms, and the material is converted into metal. We find obvious charge overlapping in the vicinity of Na atoms, these charge overlaps appearing around the Na and C atoms indicate the existence of covalent bond and this covalent bond also appears around the Na atoms and N atoms. We prove the existence of the chemical bonds by adopting the Bader charge analysis, which suggests that the C atoms in the lower graphene layer obtain 0.11 e and dopant atoms around the three N atoms obtain 0.68 e. We infer that the increasing of Na atom doping can increase the charge transfer, so the method of changing the substrate to increase the graphene layer charge density is very conducive to the application of graphene in electronic devices. Because the double h-BN/Graphene has been successfully synthesized, our calculations provide a theoretical basis for the further development and application of technology. We can expect that Na atom doped double h-BN/Graphene can be well applied to the future electronic devices.
      通信作者: 戴振宏, zhdai@ytu.edu.cn.
    • 基金项目: 教育部新世纪优秀人才支持计划(批准号: NCET-09-0867)资助的课题.
      Corresponding author: Dai Zhen-Hong, zhdai@ytu.edu.cn.
    • Funds: Project supported by the New Century Excellent Talents in University in Ministry of Education of China (Grant No. NCET-09-0867).
    [1]

    Xu L, Dai Z H, Wang S, Liu B, Sun Y M, Wang W T 2014 Acta Phys. Sin. 63 107102 (in Chinese) [徐雷, 戴振宏, 王森, 刘兵, 孙玉明, 王伟田 2014 63 107102]

    [2]

    Xu L, Dai Z H, Sui P F, Wang W T, Sun Y M 2014 Acta Phys. Sin. 63 186101 (in Chinese) [徐雷, 戴振宏, 隋鹏飞, 王伟田, 孙玉明 2014 63 186101]

    [3]

    Dai Z H, Zhao Y C 2014 Appl. Surf. Sci. 305 382

    [4]

    Zhang Y, Hu C H, Wen Y H, Wu S Q, Zhu Z Z 2011 New J. Phys. 13 063047

    [5]

    Meyer J C, Chuvilin A, Algara-Siller G, Biskupek J, Kaiser U 2009 Nano Lett. 9 2683

    [6]

    Zhi C Y, Bando Y, Tang C C, Kuwahara H, Golberg D 2009 Adv. Mater. 21 2889

    [7]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722

    [8]

    Decker R, Wang Y, Brar V W, Regan W, Tsai H Z, Wu Q, Gannett W, Zettl A, Crommie M F 2011 Nano Lett. 11 2291

    [9]

    Kharche N, Nayak S K 2011 Nano Lett. 11 5274

    [10]

    Sachs B, Wehling T O, Katsnelson M I, Lichtenstein A I 2011 Phys. Rev. B 84 195414

    [11]

    Kindermann M, Uchoa B, Miller D L 2012 Phys. Rev. B 86 115415

    [12]

    Song J C W, Shytov A V, Levitov L S 2013 Phys. Rev. Lett. 111 266801

    [13]

    Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Harillo-Herrero P, Jacquod P, Leroy B J 2012 Nat. Phys. 8 382

    [14]

    Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598

    [15]

    Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 6139

    [16]

    Mucha-Kruczynski M, Wallbank J R, FalKo V I 2013 Phys. Rev. B 88 205418

    [17]

    Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Mucha-Kruczynski M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, FalKo V I, Geim A K 2013 Nature 497 594

    [18]

    Pikalov A A, Fil D V 2012 Nanoscale. Res. Lett. 7 145

    [19]

    Geim A K 2009 Science 324 1530

    [20]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [21]

    Weitz R T, Yacoby A 2010 Nat. Nanotechnol. 5 699

    [22]

    Peres N M R 2010 Rev. Mod. Phys. 82 2673

    [23]

    Sarma S D, Hwang E H 2011 Phys. Rev. B 83 121405

    [24]

    Giovannetti G, Khomyakov P A, Brocks G, Kelly P J, van den Brink J 2007 Phys. Rev. B 76 073103

    [25]

    Zhong X, Yap Y K, Pandey R, Karna S P 2011 Phys. Rev. B 83 193403

    [26]

    Fan Y, Zhao M, Wang Z, Zhang X, Zhang H 2011 Appl. Phys. Lett. 98 083103

    [27]

    Mao Y L, Xie Z Q, Yuan J M, Li S H, Wei Z, Zhong J X 2013 Physica E 49 111

    [28]

    Hashmi A, Hong J S 2014 J. Magn. Magn. Mater. 355 7

    [29]

    Li S H, Yuan J M, Hu Y W, Zhong J X, Mao Y L 2014 Physica E 56 24

    [30]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [31]

    Kresse G, Joubert J 1999 Phys. Rev. B 59 1758

    [32]

    Sakai Y, Koretsune T, Saito S 2011 Phys. Rev. B 83 205434

    [33]

    Liu Z, Song L, Zhao S, Huang J, Ma L, Zhang J, Lou J, Ajayan P M 2011 Nano Lett. 11 2032

    [34]

    Liu L, Ryu S M, Tomasik M R, Stolyarova E, Jung N, Hybertsen M S, Steigerwald M L, Brus L E, Flynn G W 2008 Nano Lett. 8 1965

    [35]

    Ryu S, Liu L, Berciaud S, Yu Y J, Liu H, Kim P, Flynn G W, Brus L E 2010 Nano Lett. 10 4944

    [36]

    Morozov S V, Novoselov K S, Schedin F, Jiang D, Firsov A A, Geim A K 2005 Phys. Rev. B 72 201401

    [37]

    Behera H, Mukhopadhyay G 2012 J. Phys. Chem. Solids 73 818

  • [1]

    Xu L, Dai Z H, Wang S, Liu B, Sun Y M, Wang W T 2014 Acta Phys. Sin. 63 107102 (in Chinese) [徐雷, 戴振宏, 王森, 刘兵, 孙玉明, 王伟田 2014 63 107102]

    [2]

    Xu L, Dai Z H, Sui P F, Wang W T, Sun Y M 2014 Acta Phys. Sin. 63 186101 (in Chinese) [徐雷, 戴振宏, 隋鹏飞, 王伟田, 孙玉明 2014 63 186101]

    [3]

    Dai Z H, Zhao Y C 2014 Appl. Surf. Sci. 305 382

    [4]

    Zhang Y, Hu C H, Wen Y H, Wu S Q, Zhu Z Z 2011 New J. Phys. 13 063047

    [5]

    Meyer J C, Chuvilin A, Algara-Siller G, Biskupek J, Kaiser U 2009 Nano Lett. 9 2683

    [6]

    Zhi C Y, Bando Y, Tang C C, Kuwahara H, Golberg D 2009 Adv. Mater. 21 2889

    [7]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722

    [8]

    Decker R, Wang Y, Brar V W, Regan W, Tsai H Z, Wu Q, Gannett W, Zettl A, Crommie M F 2011 Nano Lett. 11 2291

    [9]

    Kharche N, Nayak S K 2011 Nano Lett. 11 5274

    [10]

    Sachs B, Wehling T O, Katsnelson M I, Lichtenstein A I 2011 Phys. Rev. B 84 195414

    [11]

    Kindermann M, Uchoa B, Miller D L 2012 Phys. Rev. B 86 115415

    [12]

    Song J C W, Shytov A V, Levitov L S 2013 Phys. Rev. Lett. 111 266801

    [13]

    Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Harillo-Herrero P, Jacquod P, Leroy B J 2012 Nat. Phys. 8 382

    [14]

    Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598

    [15]

    Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 6139

    [16]

    Mucha-Kruczynski M, Wallbank J R, FalKo V I 2013 Phys. Rev. B 88 205418

    [17]

    Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Mucha-Kruczynski M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, FalKo V I, Geim A K 2013 Nature 497 594

    [18]

    Pikalov A A, Fil D V 2012 Nanoscale. Res. Lett. 7 145

    [19]

    Geim A K 2009 Science 324 1530

    [20]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [21]

    Weitz R T, Yacoby A 2010 Nat. Nanotechnol. 5 699

    [22]

    Peres N M R 2010 Rev. Mod. Phys. 82 2673

    [23]

    Sarma S D, Hwang E H 2011 Phys. Rev. B 83 121405

    [24]

    Giovannetti G, Khomyakov P A, Brocks G, Kelly P J, van den Brink J 2007 Phys. Rev. B 76 073103

    [25]

    Zhong X, Yap Y K, Pandey R, Karna S P 2011 Phys. Rev. B 83 193403

    [26]

    Fan Y, Zhao M, Wang Z, Zhang X, Zhang H 2011 Appl. Phys. Lett. 98 083103

    [27]

    Mao Y L, Xie Z Q, Yuan J M, Li S H, Wei Z, Zhong J X 2013 Physica E 49 111

    [28]

    Hashmi A, Hong J S 2014 J. Magn. Magn. Mater. 355 7

    [29]

    Li S H, Yuan J M, Hu Y W, Zhong J X, Mao Y L 2014 Physica E 56 24

    [30]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [31]

    Kresse G, Joubert J 1999 Phys. Rev. B 59 1758

    [32]

    Sakai Y, Koretsune T, Saito S 2011 Phys. Rev. B 83 205434

    [33]

    Liu Z, Song L, Zhao S, Huang J, Ma L, Zhang J, Lou J, Ajayan P M 2011 Nano Lett. 11 2032

    [34]

    Liu L, Ryu S M, Tomasik M R, Stolyarova E, Jung N, Hybertsen M S, Steigerwald M L, Brus L E, Flynn G W 2008 Nano Lett. 8 1965

    [35]

    Ryu S, Liu L, Berciaud S, Yu Y J, Liu H, Kim P, Flynn G W, Brus L E 2010 Nano Lett. 10 4944

    [36]

    Morozov S V, Novoselov K S, Schedin F, Jiang D, Firsov A A, Geim A K 2005 Phys. Rev. B 72 201401

    [37]

    Behera H, Mukhopadhyay G 2012 J. Phys. Chem. Solids 73 818

  • [1] 周嘉健, 张宇文, 何朝宇, 欧阳滔, 李金, 唐超. 二维SiP2同素异构体结构预测及其电子性质的第一性原理研究.  , 2022, 71(23): 236101. doi: 10.7498/aps.71.20220853
    [2] 张小超, 管美画, 张启瑞, 张长明, 李瑞, 刘建新, 王雅文, 樊彩梅. 单原子Pt吸附于不同原子暴露终端BiOBr{001}面的第一性原理研究.  , 2021, 70(8): 087101. doi: 10.7498/aps.70.20201572
    [3] 侯璐, 童鑫, 欧阳钢. 一维carbyne链原子键性质应变调控的第一性原理研究.  , 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [4] 左博敏, 袁健美, 冯志, 毛宇亮. 应力调控下二维硒化锗五种同分异构体的第一性原理研究.  , 2019, 68(11): 113103. doi: 10.7498/aps.68.20182266
    [5] 陈璐, 李烨飞, 郑巧玲, 刘庆坤, 高义民, 李博, 周长猛. B2-和B19'-NiTi表面原子弛豫、表面能、电子结构及性能的理论研究.  , 2019, 68(5): 053101. doi: 10.7498/aps.68.20181944
    [6] 丁超, 李卫, 刘菊燕, 王琳琳, 蔡云, 潘沛锋. Sb,S共掺杂SnO2电子结构的第一性原理分析.  , 2018, 67(21): 213102. doi: 10.7498/aps.67.20181228
    [7] 刘博, 王煊军, 卜晓宇. 高压下NH4ClO4结构、电子及弹性性质的第一性原理研究.  , 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [8] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究.  , 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [9] 何静芳, 郑树凯, 周鹏力, 史茹倩, 闫小兵. Cu-Co共掺杂ZnO光电性质的第一性原理计算.  , 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [10] 冯小勤, 贾建明, 陈贵宾. 弯曲BN纳米片的电子性质及其调制.  , 2014, 63(3): 037101. doi: 10.7498/aps.63.037101
    [11] 徐雷, 戴振宏, 王森, 刘兵, 孙玉明, 王伟田. 氟化硼碳平面的第一性原理研究.  , 2014, 63(10): 107102. doi: 10.7498/aps.63.107102
    [12] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究.  , 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [13] 李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜. 第一性原理研究稀土掺杂ZnO结构的光电性质.  , 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [14] 张计划, 丁建文, 卢章辉. Co掺杂MgF2电子结构和光学特性的第一性原理研究.  , 2009, 58(3): 1901-1907. doi: 10.7498/aps.58.1901
    [15] 林竹, 郭志友, 毕艳军, 董玉成. Cu掺杂的AlN铁磁性和光学性质的第一性原理研究.  , 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [16] 黄云霞, 曹全喜, 李智敏, 李桂芳, 王毓鹏, 卫云鸽. Al掺杂ZnO粉体的第一性原理计算及微波介电性质.  , 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
    [17] 宋久旭, 杨银堂, 刘红霞, 张志勇. 掺氮碳化硅纳米管电子结构的第一性原理研究.  , 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [18] 杨敏, 王六定, 陈国栋, 安博, 王益军, 刘光清. 碳掺杂闭口硼氮纳米管场发射第一性原理研究.  , 2009, 58(10): 7151-7155. doi: 10.7498/aps.58.7151
    [19] 陈国栋, 王六定, 安博, 杨敏. 碳掺杂硼氮纳米管电子场发射的第一性原理研究.  , 2009, 58(13): 254-S258. doi: 10.7498/aps.58.254
    [20] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究.  , 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
计量
  • 文章访问数:  6742
  • PDF下载量:  463
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-08
  • 修回日期:  2016-04-16
  • 刊出日期:  2016-07-05

/

返回文章
返回
Baidu
map