搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

活性质吸附氢修饰金刚石表面的第一性原理研究

刘峰斌 陈文彬 崔岩 屈敏 曹雷刚 杨越

引用本文:
Citation:

活性质吸附氢修饰金刚石表面的第一性原理研究

刘峰斌, 陈文彬, 崔岩, 屈敏, 曹雷刚, 杨越

A first principles study on the active adsorbates on the hydrogenated diamond surface

Liu Feng-Bin, Chen Wen-Bin, Cui Yan, Qu Min, Cao Lei-Gang, Yang Yue
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理方法,构建了不同活性质吸附氢修饰和氧修饰金刚石(100)表面,计算了氢修饰和氧修饰金刚石(100)表面吸附体系的平衡态几何构型和态密度.结果表明,氢修饰金刚石表面与H3O+离子间具有较强的相互作用,在费米能级附近出现浅受主能级,电荷会发生从氢修饰金刚石表面向吸附H3O+离子迁移,从而呈现p型导电性;当吸附物为H3O+离子和H2O分子混合吸附时,能带结构发生改变,但是其导电性并没有发生变化.相比之下,含水分子和H3O+离子的吸附物在氧修饰金刚石表面将发生分解,不能稳定存在,吸附体系仍呈现绝缘性质.
    Hydrogenated diamond film exhibits a high surface conductivity, which is very suitable for many in-plane microelectronic and microelectrochemical devices. However, the surface conductivity mechanism of hydrogenated diamond film remains unclear up to now. It inevitably retards its further applications. This work is to elucidate the effects of active adsorbate and water molecule on surface conductivity of hydrogenated diamond film. By the first principles method based on density functional theory, several models corresponding to hydrogenated and oxygenated diamond (100) surfaces physisorbed with various active adsorbates are built up. The adsorbed species include H3O+ ion mixed with H2O molecules with different concentrations. The adsorption energy, equilibrium geometry and density of states corresponding to the adsorption system are investigated. At the same time, the electron populations for different atoms of the physisorbed adsorbates are studied. The results show that the equilibrium geometry of H3O+ ion relaxes significantly after adsorption on hydrogenated diamond (100) surface. In addition, its adsorption energy increases dramatically compared with the system of individual H2O molecule adsorbed on hydrogenated diamond (100) surface. It follows that the strong interactions occur between H3O+ ion and hydrogenated diamond surface. With the concentration of the adsorbed H2O molecules increasing, the adsorption energy between the adsorbate and hydrogenated diamond (100) surface decreases gradually. It indicates that the interactions between H3O+ ion and the substrate weaken as the water molecule concentration increases. Concerning the electronic structure of H3O+ ion adsorbed on hydrogenated diamond (100) surface, shallow acceptors appear near Fermi level, which arises from charge transfer from hydrogenated diamond surface to adsorbed H3O+ ion. Therefore, hydrogenated diamond surface exhibits a p-type conductivity. With regard to the mixed adsorptions of H3O+ ion and H2O molecule, no significant effect on its conductivity is detected, though its surface energy band structure changes. At the same time, the electron transfers from hydrogenated diamond (100) surfaces to the adsorbates are also similar for all the systems with the adsorbates including one H3O+ ion and different H2O molecules. Thus, the adsorbed H2O molecule concentration in this work has no effect on the surface conductivity of hydrogenated diamond surface. However, the adsorbates containing H2O molecules and H3O+ ion physisorbed on oxygenated diamond (100) surfaces do not exist stably. The H3O+ ion will decompose into one H2O molecule and one H atom, which form HO bond with one O atom of oxygenated diamond surface. All the oxygenated diamond surfaces with various adsorbates exhibit an electric insulativity.
      通信作者: 刘峰斌, fbliu@ncut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51575004)和北京市自然科学基金(批准号:3162010)资助的课题.
      Corresponding author: Liu Feng-Bin, fbliu@ncut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51575004) and the Natural Science Foundation of Beijing, China (Grant No. 3162010).
    [1]

    Drory M D, Hutchinson J E 1994 Science 263 1753

    [2]

    Dai D H, Zhou K S 2001 Preparation Process and Application of Diamond Thin Film Deposition (Beijing:Metallurgical Industry Press) pp1-7(in Chinese)[戴达煌, 周克崧2001金刚石薄膜沉积制备工艺与应用(北京市:冶金工业出版社)第1–7页]

    [3]

    Landstrass M I, Ravi K V 1989 Appl. Phys. Lett. 55 1391

    [4]

    Shirafuji J, Sugino T 1996 Diamond Relat. Mater. 5 706

    [5]

    Kawarada H, Sasaki H, Sato A 1995 Phys. Rev. B 52 11351

    [6]

    Hayashi K, Yamanaka S, Watanabe H, Sekiguchi T 1997 J. Appl. Phys. 81 744

    [7]

    Goss J P, Hourahine B, Jones R, Heggie M I, Briddon P R 2001 J. Phys. Condens. Matter 13 8973

    [8]

    Goss J P, Jones R, Heggie M I, Briddon P R 2002 Phys. Rev. B 65 115207

    [9]

    Ri S G, Tashiro K, Tanaka S, Fujisawa T, Kimura H 1999 Appl. Phys. 38 3492

    [10]

    Maier F, Riedel M, Mantel B, Ristein J, Ley L 2000 Phys. Rev. Lett. 85 3472

    [11]

    Nebel C E 2007 Science 318 1391

    [12]

    Mareš J J, Hubik P, Kristofik J, Ristein J, Strobel P, Ley L 2008 Diamond Relat. Mater. 17 1356

    [13]

    Chakrapani V, Angus J C, Anderson A B, Wolter S D, Stoner B R, Sumanasekera G U 2007 Science 318 1424

    [14]

    Kubovic M, Kasu M, Kageshima H, Maeda F 2010 Diamond Relat. Mater. 19 889

    [15]

    Sato H, Kasu M 2012 Diamond Relat. Mater. 24 99

    [16]

    Bobrov K, Mayne A, Comtet G, Dujardin G, Hellner L 2003 Phys. Rev. B 68 195416

    [17]

    Phersson P E, Mercer T W 2000 Surf. Sci. 460 49

    [18]

    Pehrsson P E, Mercer T W 2000 Surf. Sci. 460 74

    [19]

    Pehrsson P E, Mercer T W 2002 Surf. Sci. 497 13

    [20]

    Hassan M M, Karin L 2014 Phys. Chem. C 118 22995

    [21]

    Rutter M J, Robertson J 1998 Phys. Rev. B 57 9241

    [22]

    Girija K G, Nuwad J, Vatsa R K 2013 Diamond Relat. Mater. 40 38

    [23]

    Liu F B, Li J L, Chen W B, Cui Y, Jiao Z W, Yan H J, Qu M, Di J J 2016 Front. Phys. 11 116804

    [24]

    Takagi Y, Shiraishi K, Kasu M, Sato H 2013 Surf. Sci. 609 203

    [25]

    Sebastian B, Andreas H, Gerhard M, Jose G, Martin S 2013 Sens. Actuat. B 181 894

    [26]

    Helwig A, Mller G, Garrido J A, Eickhoff M 2008 Sens. Actuat. B 133 156

    [27]

    Wang Q, Qu S L, Fu S Y, Liu W J, Li J J, Gu C Z 2007 J. Appl. Phys. 102 103714

    [28]

    Helwig A, Mller G, Sberveglieri G, Eickhoff M 2009 J. Sens. 2009 1

    [29]

    Groß A, Beulertz G, Marr I, Kubinski D J, Visser J H, Moos R 2012 Sensors 12 2831

    [30]

    Davydova M, Stuchlik M, Rezek B, Kromka A 2012 Vacuum 86 599

  • [1]

    Drory M D, Hutchinson J E 1994 Science 263 1753

    [2]

    Dai D H, Zhou K S 2001 Preparation Process and Application of Diamond Thin Film Deposition (Beijing:Metallurgical Industry Press) pp1-7(in Chinese)[戴达煌, 周克崧2001金刚石薄膜沉积制备工艺与应用(北京市:冶金工业出版社)第1–7页]

    [3]

    Landstrass M I, Ravi K V 1989 Appl. Phys. Lett. 55 1391

    [4]

    Shirafuji J, Sugino T 1996 Diamond Relat. Mater. 5 706

    [5]

    Kawarada H, Sasaki H, Sato A 1995 Phys. Rev. B 52 11351

    [6]

    Hayashi K, Yamanaka S, Watanabe H, Sekiguchi T 1997 J. Appl. Phys. 81 744

    [7]

    Goss J P, Hourahine B, Jones R, Heggie M I, Briddon P R 2001 J. Phys. Condens. Matter 13 8973

    [8]

    Goss J P, Jones R, Heggie M I, Briddon P R 2002 Phys. Rev. B 65 115207

    [9]

    Ri S G, Tashiro K, Tanaka S, Fujisawa T, Kimura H 1999 Appl. Phys. 38 3492

    [10]

    Maier F, Riedel M, Mantel B, Ristein J, Ley L 2000 Phys. Rev. Lett. 85 3472

    [11]

    Nebel C E 2007 Science 318 1391

    [12]

    Mareš J J, Hubik P, Kristofik J, Ristein J, Strobel P, Ley L 2008 Diamond Relat. Mater. 17 1356

    [13]

    Chakrapani V, Angus J C, Anderson A B, Wolter S D, Stoner B R, Sumanasekera G U 2007 Science 318 1424

    [14]

    Kubovic M, Kasu M, Kageshima H, Maeda F 2010 Diamond Relat. Mater. 19 889

    [15]

    Sato H, Kasu M 2012 Diamond Relat. Mater. 24 99

    [16]

    Bobrov K, Mayne A, Comtet G, Dujardin G, Hellner L 2003 Phys. Rev. B 68 195416

    [17]

    Phersson P E, Mercer T W 2000 Surf. Sci. 460 49

    [18]

    Pehrsson P E, Mercer T W 2000 Surf. Sci. 460 74

    [19]

    Pehrsson P E, Mercer T W 2002 Surf. Sci. 497 13

    [20]

    Hassan M M, Karin L 2014 Phys. Chem. C 118 22995

    [21]

    Rutter M J, Robertson J 1998 Phys. Rev. B 57 9241

    [22]

    Girija K G, Nuwad J, Vatsa R K 2013 Diamond Relat. Mater. 40 38

    [23]

    Liu F B, Li J L, Chen W B, Cui Y, Jiao Z W, Yan H J, Qu M, Di J J 2016 Front. Phys. 11 116804

    [24]

    Takagi Y, Shiraishi K, Kasu M, Sato H 2013 Surf. Sci. 609 203

    [25]

    Sebastian B, Andreas H, Gerhard M, Jose G, Martin S 2013 Sens. Actuat. B 181 894

    [26]

    Helwig A, Mller G, Garrido J A, Eickhoff M 2008 Sens. Actuat. B 133 156

    [27]

    Wang Q, Qu S L, Fu S Y, Liu W J, Li J J, Gu C Z 2007 J. Appl. Phys. 102 103714

    [28]

    Helwig A, Mller G, Sberveglieri G, Eickhoff M 2009 J. Sens. 2009 1

    [29]

    Groß A, Beulertz G, Marr I, Kubinski D J, Visser J H, Moos R 2012 Sensors 12 2831

    [30]

    Davydova M, Stuchlik M, Rezek B, Kromka A 2012 Vacuum 86 599

  • [1] 刘俊岭, 柏于杰, 徐宁, 张勤芳. GaS/Mg(OH)2异质结电子结构的第一性原理研究.  , 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [2] 莫秋燕, 张颂, 荆涛, 张泓筠, 李先绪, 吴家隐. CuSe表面修饰的第一性原理研究.  , 2023, 72(12): 127301. doi: 10.7498/aps.72.20230093
    [3] 袁俊辉, 谢晴兴, 余念念, 王嘉赋. 单层SbAs和BiSb的表面修饰调控.  , 2016, 65(21): 217101. doi: 10.7498/aps.65.217101
    [4] 张传国, 杨勇, 郝汀, 张铭. 金刚石表面无定形碳氢薄膜生长的分子动力学模拟.  , 2015, 64(1): 018102. doi: 10.7498/aps.64.018102
    [5] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究.  , 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [6] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质.  , 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [7] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究.  , 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [8] 李国旗, 张小超, 丁光月, 樊彩梅, 梁镇海, 韩培德. BiOCl{001}表面原子与电子结构的第一性原理研究.  , 2013, 62(12): 127301. doi: 10.7498/aps.62.127301
    [9] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究.  , 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [10] 杜玉杰, 常本康, 张俊举, 李飙, 王晓晖. GaN(0001)表面电子结构和光学性质的第一性原理研究.  , 2012, 61(6): 067101. doi: 10.7498/aps.61.067101
    [11] 郑立思, 冯苗, 詹红兵. 表面修饰基团对金纳米颗粒非线性光学效应的影响研究.  , 2012, 61(5): 054212. doi: 10.7498/aps.61.054212
    [12] 石巍巍, 李雯, 仪明东, 解令海, 韦玮, 黄维. 基于栅绝缘层表面修饰的有机场效应晶体管迁移率的研究进展.  , 2012, 61(22): 228502. doi: 10.7498/aps.61.228502
    [13] 文黎巍, 王玉梅, 裴慧霞, 丁俊. Sb系half-Heusler合金磁性及电子结构的第一性原理研究.  , 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [14] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析.  , 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [15] 宋久旭, 杨银堂, 刘红霞, 张志勇. 掺氮碳化硅纳米管电子结构的第一性原理研究.  , 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [16] 杨冲, 杨春. Si(001)表面硅氧团簇原子与电子结构的第一性原理研究.  , 2009, 58(8): 5362-5369. doi: 10.7498/aps.58.5362
    [17] 黄金华, 张 琨, 潘 楠, 高志伟, 王晓平. 表面修饰ZnO纳米线紫外光响应的增强效应.  , 2008, 57(12): 7855-7859. doi: 10.7498/aps.57.7855
    [18] 李 鹤, 李学东, 李 娟, 吴春亚, 孟志国, 熊绍珍, 张丽珠. 表面修饰改善溶液法金属诱导晶化薄膜稳定性与均匀性研究.  , 2008, 57(4): 2476-2480. doi: 10.7498/aps.57.2476
    [19] 倪建刚, 刘 诺, 杨果来, 张 曦. 第一性原理研究BaTiO3(001)表面的电子结构.  , 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [20] 潘志军, 张澜庭, 吴建生. CoSi电子结构第一性原理研究.  , 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
计量
  • 文章访问数:  6280
  • PDF下载量:  213
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-08
  • 修回日期:  2016-08-26
  • 刊出日期:  2016-12-05

/

返回文章
返回
Baidu
map