-
Hydrogenated diamond film exhibits a high surface conductivity, which is very suitable for many in-plane microelectronic and microelectrochemical devices. However, the surface conductivity mechanism of hydrogenated diamond film remains unclear up to now. It inevitably retards its further applications. This work is to elucidate the effects of active adsorbate and water molecule on surface conductivity of hydrogenated diamond film. By the first principles method based on density functional theory, several models corresponding to hydrogenated and oxygenated diamond (100) surfaces physisorbed with various active adsorbates are built up. The adsorbed species include H3O+ ion mixed with H2O molecules with different concentrations. The adsorption energy, equilibrium geometry and density of states corresponding to the adsorption system are investigated. At the same time, the electron populations for different atoms of the physisorbed adsorbates are studied. The results show that the equilibrium geometry of H3O+ ion relaxes significantly after adsorption on hydrogenated diamond (100) surface. In addition, its adsorption energy increases dramatically compared with the system of individual H2O molecule adsorbed on hydrogenated diamond (100) surface. It follows that the strong interactions occur between H3O+ ion and hydrogenated diamond surface. With the concentration of the adsorbed H2O molecules increasing, the adsorption energy between the adsorbate and hydrogenated diamond (100) surface decreases gradually. It indicates that the interactions between H3O+ ion and the substrate weaken as the water molecule concentration increases. Concerning the electronic structure of H3O+ ion adsorbed on hydrogenated diamond (100) surface, shallow acceptors appear near Fermi level, which arises from charge transfer from hydrogenated diamond surface to adsorbed H3O+ ion. Therefore, hydrogenated diamond surface exhibits a p-type conductivity. With regard to the mixed adsorptions of H3O+ ion and H2O molecule, no significant effect on its conductivity is detected, though its surface energy band structure changes. At the same time, the electron transfers from hydrogenated diamond (100) surfaces to the adsorbates are also similar for all the systems with the adsorbates including one H3O+ ion and different H2O molecules. Thus, the adsorbed H2O molecule concentration in this work has no effect on the surface conductivity of hydrogenated diamond surface. However, the adsorbates containing H2O molecules and H3O+ ion physisorbed on oxygenated diamond (100) surfaces do not exist stably. The H3O+ ion will decompose into one H2O molecule and one H atom, which form HO bond with one O atom of oxygenated diamond surface. All the oxygenated diamond surfaces with various adsorbates exhibit an electric insulativity.
-
Keywords:
- first principles /
- diamond surface /
- surface modification /
- electronic structure
[1] Drory M D, Hutchinson J E 1994 Science 263 1753
[2] Dai D H, Zhou K S 2001 Preparation Process and Application of Diamond Thin Film Deposition (Beijing:Metallurgical Industry Press) pp1-7(in Chinese)[戴达煌, 周克崧2001金刚石薄膜沉积制备工艺与应用(北京市:冶金工业出版社)第1–7页]
[3] Landstrass M I, Ravi K V 1989 Appl. Phys. Lett. 55 1391
[4] Shirafuji J, Sugino T 1996 Diamond Relat. Mater. 5 706
[5] Kawarada H, Sasaki H, Sato A 1995 Phys. Rev. B 52 11351
[6] Hayashi K, Yamanaka S, Watanabe H, Sekiguchi T 1997 J. Appl. Phys. 81 744
[7] Goss J P, Hourahine B, Jones R, Heggie M I, Briddon P R 2001 J. Phys. Condens. Matter 13 8973
[8] Goss J P, Jones R, Heggie M I, Briddon P R 2002 Phys. Rev. B 65 115207
[9] Ri S G, Tashiro K, Tanaka S, Fujisawa T, Kimura H 1999 Appl. Phys. 38 3492
[10] Maier F, Riedel M, Mantel B, Ristein J, Ley L 2000 Phys. Rev. Lett. 85 3472
[11] Nebel C E 2007 Science 318 1391
[12] Mareš J J, Hubik P, Kristofik J, Ristein J, Strobel P, Ley L 2008 Diamond Relat. Mater. 17 1356
[13] Chakrapani V, Angus J C, Anderson A B, Wolter S D, Stoner B R, Sumanasekera G U 2007 Science 318 1424
[14] Kubovic M, Kasu M, Kageshima H, Maeda F 2010 Diamond Relat. Mater. 19 889
[15] Sato H, Kasu M 2012 Diamond Relat. Mater. 24 99
[16] Bobrov K, Mayne A, Comtet G, Dujardin G, Hellner L 2003 Phys. Rev. B 68 195416
[17] Phersson P E, Mercer T W 2000 Surf. Sci. 460 49
[18] Pehrsson P E, Mercer T W 2000 Surf. Sci. 460 74
[19] Pehrsson P E, Mercer T W 2002 Surf. Sci. 497 13
[20] Hassan M M, Karin L 2014 Phys. Chem. C 118 22995
[21] Rutter M J, Robertson J 1998 Phys. Rev. B 57 9241
[22] Girija K G, Nuwad J, Vatsa R K 2013 Diamond Relat. Mater. 40 38
[23] Liu F B, Li J L, Chen W B, Cui Y, Jiao Z W, Yan H J, Qu M, Di J J 2016 Front. Phys. 11 116804
[24] Takagi Y, Shiraishi K, Kasu M, Sato H 2013 Surf. Sci. 609 203
[25] Sebastian B, Andreas H, Gerhard M, Jose G, Martin S 2013 Sens. Actuat. B 181 894
[26] Helwig A, Mller G, Garrido J A, Eickhoff M 2008 Sens. Actuat. B 133 156
[27] Wang Q, Qu S L, Fu S Y, Liu W J, Li J J, Gu C Z 2007 J. Appl. Phys. 102 103714
[28] Helwig A, Mller G, Sberveglieri G, Eickhoff M 2009 J. Sens. 2009 1
[29] Groß A, Beulertz G, Marr I, Kubinski D J, Visser J H, Moos R 2012 Sensors 12 2831
[30] Davydova M, Stuchlik M, Rezek B, Kromka A 2012 Vacuum 86 599
-
[1] Drory M D, Hutchinson J E 1994 Science 263 1753
[2] Dai D H, Zhou K S 2001 Preparation Process and Application of Diamond Thin Film Deposition (Beijing:Metallurgical Industry Press) pp1-7(in Chinese)[戴达煌, 周克崧2001金刚石薄膜沉积制备工艺与应用(北京市:冶金工业出版社)第1–7页]
[3] Landstrass M I, Ravi K V 1989 Appl. Phys. Lett. 55 1391
[4] Shirafuji J, Sugino T 1996 Diamond Relat. Mater. 5 706
[5] Kawarada H, Sasaki H, Sato A 1995 Phys. Rev. B 52 11351
[6] Hayashi K, Yamanaka S, Watanabe H, Sekiguchi T 1997 J. Appl. Phys. 81 744
[7] Goss J P, Hourahine B, Jones R, Heggie M I, Briddon P R 2001 J. Phys. Condens. Matter 13 8973
[8] Goss J P, Jones R, Heggie M I, Briddon P R 2002 Phys. Rev. B 65 115207
[9] Ri S G, Tashiro K, Tanaka S, Fujisawa T, Kimura H 1999 Appl. Phys. 38 3492
[10] Maier F, Riedel M, Mantel B, Ristein J, Ley L 2000 Phys. Rev. Lett. 85 3472
[11] Nebel C E 2007 Science 318 1391
[12] Mareš J J, Hubik P, Kristofik J, Ristein J, Strobel P, Ley L 2008 Diamond Relat. Mater. 17 1356
[13] Chakrapani V, Angus J C, Anderson A B, Wolter S D, Stoner B R, Sumanasekera G U 2007 Science 318 1424
[14] Kubovic M, Kasu M, Kageshima H, Maeda F 2010 Diamond Relat. Mater. 19 889
[15] Sato H, Kasu M 2012 Diamond Relat. Mater. 24 99
[16] Bobrov K, Mayne A, Comtet G, Dujardin G, Hellner L 2003 Phys. Rev. B 68 195416
[17] Phersson P E, Mercer T W 2000 Surf. Sci. 460 49
[18] Pehrsson P E, Mercer T W 2000 Surf. Sci. 460 74
[19] Pehrsson P E, Mercer T W 2002 Surf. Sci. 497 13
[20] Hassan M M, Karin L 2014 Phys. Chem. C 118 22995
[21] Rutter M J, Robertson J 1998 Phys. Rev. B 57 9241
[22] Girija K G, Nuwad J, Vatsa R K 2013 Diamond Relat. Mater. 40 38
[23] Liu F B, Li J L, Chen W B, Cui Y, Jiao Z W, Yan H J, Qu M, Di J J 2016 Front. Phys. 11 116804
[24] Takagi Y, Shiraishi K, Kasu M, Sato H 2013 Surf. Sci. 609 203
[25] Sebastian B, Andreas H, Gerhard M, Jose G, Martin S 2013 Sens. Actuat. B 181 894
[26] Helwig A, Mller G, Garrido J A, Eickhoff M 2008 Sens. Actuat. B 133 156
[27] Wang Q, Qu S L, Fu S Y, Liu W J, Li J J, Gu C Z 2007 J. Appl. Phys. 102 103714
[28] Helwig A, Mller G, Sberveglieri G, Eickhoff M 2009 J. Sens. 2009 1
[29] Groß A, Beulertz G, Marr I, Kubinski D J, Visser J H, Moos R 2012 Sensors 12 2831
[30] Davydova M, Stuchlik M, Rezek B, Kromka A 2012 Vacuum 86 599
Catalog
Metrics
- Abstract views: 6282
- PDF Downloads: 213
- Cited By: 0