Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A first principles study on the active adsorbates on the hydrogenated diamond surface

Liu Feng-Bin Chen Wen-Bin Cui Yan Qu Min Cao Lei-Gang Yang Yue

Citation:

A first principles study on the active adsorbates on the hydrogenated diamond surface

Liu Feng-Bin, Chen Wen-Bin, Cui Yan, Qu Min, Cao Lei-Gang, Yang Yue
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Hydrogenated diamond film exhibits a high surface conductivity, which is very suitable for many in-plane microelectronic and microelectrochemical devices. However, the surface conductivity mechanism of hydrogenated diamond film remains unclear up to now. It inevitably retards its further applications. This work is to elucidate the effects of active adsorbate and water molecule on surface conductivity of hydrogenated diamond film. By the first principles method based on density functional theory, several models corresponding to hydrogenated and oxygenated diamond (100) surfaces physisorbed with various active adsorbates are built up. The adsorbed species include H3O+ ion mixed with H2O molecules with different concentrations. The adsorption energy, equilibrium geometry and density of states corresponding to the adsorption system are investigated. At the same time, the electron populations for different atoms of the physisorbed adsorbates are studied. The results show that the equilibrium geometry of H3O+ ion relaxes significantly after adsorption on hydrogenated diamond (100) surface. In addition, its adsorption energy increases dramatically compared with the system of individual H2O molecule adsorbed on hydrogenated diamond (100) surface. It follows that the strong interactions occur between H3O+ ion and hydrogenated diamond surface. With the concentration of the adsorbed H2O molecules increasing, the adsorption energy between the adsorbate and hydrogenated diamond (100) surface decreases gradually. It indicates that the interactions between H3O+ ion and the substrate weaken as the water molecule concentration increases. Concerning the electronic structure of H3O+ ion adsorbed on hydrogenated diamond (100) surface, shallow acceptors appear near Fermi level, which arises from charge transfer from hydrogenated diamond surface to adsorbed H3O+ ion. Therefore, hydrogenated diamond surface exhibits a p-type conductivity. With regard to the mixed adsorptions of H3O+ ion and H2O molecule, no significant effect on its conductivity is detected, though its surface energy band structure changes. At the same time, the electron transfers from hydrogenated diamond (100) surfaces to the adsorbates are also similar for all the systems with the adsorbates including one H3O+ ion and different H2O molecules. Thus, the adsorbed H2O molecule concentration in this work has no effect on the surface conductivity of hydrogenated diamond surface. However, the adsorbates containing H2O molecules and H3O+ ion physisorbed on oxygenated diamond (100) surfaces do not exist stably. The H3O+ ion will decompose into one H2O molecule and one H atom, which form HO bond with one O atom of oxygenated diamond surface. All the oxygenated diamond surfaces with various adsorbates exhibit an electric insulativity.
      Corresponding author: Liu Feng-Bin, fbliu@ncut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51575004) and the Natural Science Foundation of Beijing, China (Grant No. 3162010).
    [1]

    Drory M D, Hutchinson J E 1994 Science 263 1753

    [2]

    Dai D H, Zhou K S 2001 Preparation Process and Application of Diamond Thin Film Deposition (Beijing:Metallurgical Industry Press) pp1-7(in Chinese)[戴达煌, 周克崧2001金刚石薄膜沉积制备工艺与应用(北京市:冶金工业出版社)第1–7页]

    [3]

    Landstrass M I, Ravi K V 1989 Appl. Phys. Lett. 55 1391

    [4]

    Shirafuji J, Sugino T 1996 Diamond Relat. Mater. 5 706

    [5]

    Kawarada H, Sasaki H, Sato A 1995 Phys. Rev. B 52 11351

    [6]

    Hayashi K, Yamanaka S, Watanabe H, Sekiguchi T 1997 J. Appl. Phys. 81 744

    [7]

    Goss J P, Hourahine B, Jones R, Heggie M I, Briddon P R 2001 J. Phys. Condens. Matter 13 8973

    [8]

    Goss J P, Jones R, Heggie M I, Briddon P R 2002 Phys. Rev. B 65 115207

    [9]

    Ri S G, Tashiro K, Tanaka S, Fujisawa T, Kimura H 1999 Appl. Phys. 38 3492

    [10]

    Maier F, Riedel M, Mantel B, Ristein J, Ley L 2000 Phys. Rev. Lett. 85 3472

    [11]

    Nebel C E 2007 Science 318 1391

    [12]

    Mareš J J, Hubik P, Kristofik J, Ristein J, Strobel P, Ley L 2008 Diamond Relat. Mater. 17 1356

    [13]

    Chakrapani V, Angus J C, Anderson A B, Wolter S D, Stoner B R, Sumanasekera G U 2007 Science 318 1424

    [14]

    Kubovic M, Kasu M, Kageshima H, Maeda F 2010 Diamond Relat. Mater. 19 889

    [15]

    Sato H, Kasu M 2012 Diamond Relat. Mater. 24 99

    [16]

    Bobrov K, Mayne A, Comtet G, Dujardin G, Hellner L 2003 Phys. Rev. B 68 195416

    [17]

    Phersson P E, Mercer T W 2000 Surf. Sci. 460 49

    [18]

    Pehrsson P E, Mercer T W 2000 Surf. Sci. 460 74

    [19]

    Pehrsson P E, Mercer T W 2002 Surf. Sci. 497 13

    [20]

    Hassan M M, Karin L 2014 Phys. Chem. C 118 22995

    [21]

    Rutter M J, Robertson J 1998 Phys. Rev. B 57 9241

    [22]

    Girija K G, Nuwad J, Vatsa R K 2013 Diamond Relat. Mater. 40 38

    [23]

    Liu F B, Li J L, Chen W B, Cui Y, Jiao Z W, Yan H J, Qu M, Di J J 2016 Front. Phys. 11 116804

    [24]

    Takagi Y, Shiraishi K, Kasu M, Sato H 2013 Surf. Sci. 609 203

    [25]

    Sebastian B, Andreas H, Gerhard M, Jose G, Martin S 2013 Sens. Actuat. B 181 894

    [26]

    Helwig A, Mller G, Garrido J A, Eickhoff M 2008 Sens. Actuat. B 133 156

    [27]

    Wang Q, Qu S L, Fu S Y, Liu W J, Li J J, Gu C Z 2007 J. Appl. Phys. 102 103714

    [28]

    Helwig A, Mller G, Sberveglieri G, Eickhoff M 2009 J. Sens. 2009 1

    [29]

    Groß A, Beulertz G, Marr I, Kubinski D J, Visser J H, Moos R 2012 Sensors 12 2831

    [30]

    Davydova M, Stuchlik M, Rezek B, Kromka A 2012 Vacuum 86 599

  • [1]

    Drory M D, Hutchinson J E 1994 Science 263 1753

    [2]

    Dai D H, Zhou K S 2001 Preparation Process and Application of Diamond Thin Film Deposition (Beijing:Metallurgical Industry Press) pp1-7(in Chinese)[戴达煌, 周克崧2001金刚石薄膜沉积制备工艺与应用(北京市:冶金工业出版社)第1–7页]

    [3]

    Landstrass M I, Ravi K V 1989 Appl. Phys. Lett. 55 1391

    [4]

    Shirafuji J, Sugino T 1996 Diamond Relat. Mater. 5 706

    [5]

    Kawarada H, Sasaki H, Sato A 1995 Phys. Rev. B 52 11351

    [6]

    Hayashi K, Yamanaka S, Watanabe H, Sekiguchi T 1997 J. Appl. Phys. 81 744

    [7]

    Goss J P, Hourahine B, Jones R, Heggie M I, Briddon P R 2001 J. Phys. Condens. Matter 13 8973

    [8]

    Goss J P, Jones R, Heggie M I, Briddon P R 2002 Phys. Rev. B 65 115207

    [9]

    Ri S G, Tashiro K, Tanaka S, Fujisawa T, Kimura H 1999 Appl. Phys. 38 3492

    [10]

    Maier F, Riedel M, Mantel B, Ristein J, Ley L 2000 Phys. Rev. Lett. 85 3472

    [11]

    Nebel C E 2007 Science 318 1391

    [12]

    Mareš J J, Hubik P, Kristofik J, Ristein J, Strobel P, Ley L 2008 Diamond Relat. Mater. 17 1356

    [13]

    Chakrapani V, Angus J C, Anderson A B, Wolter S D, Stoner B R, Sumanasekera G U 2007 Science 318 1424

    [14]

    Kubovic M, Kasu M, Kageshima H, Maeda F 2010 Diamond Relat. Mater. 19 889

    [15]

    Sato H, Kasu M 2012 Diamond Relat. Mater. 24 99

    [16]

    Bobrov K, Mayne A, Comtet G, Dujardin G, Hellner L 2003 Phys. Rev. B 68 195416

    [17]

    Phersson P E, Mercer T W 2000 Surf. Sci. 460 49

    [18]

    Pehrsson P E, Mercer T W 2000 Surf. Sci. 460 74

    [19]

    Pehrsson P E, Mercer T W 2002 Surf. Sci. 497 13

    [20]

    Hassan M M, Karin L 2014 Phys. Chem. C 118 22995

    [21]

    Rutter M J, Robertson J 1998 Phys. Rev. B 57 9241

    [22]

    Girija K G, Nuwad J, Vatsa R K 2013 Diamond Relat. Mater. 40 38

    [23]

    Liu F B, Li J L, Chen W B, Cui Y, Jiao Z W, Yan H J, Qu M, Di J J 2016 Front. Phys. 11 116804

    [24]

    Takagi Y, Shiraishi K, Kasu M, Sato H 2013 Surf. Sci. 609 203

    [25]

    Sebastian B, Andreas H, Gerhard M, Jose G, Martin S 2013 Sens. Actuat. B 181 894

    [26]

    Helwig A, Mller G, Garrido J A, Eickhoff M 2008 Sens. Actuat. B 133 156

    [27]

    Wang Q, Qu S L, Fu S Y, Liu W J, Li J J, Gu C Z 2007 J. Appl. Phys. 102 103714

    [28]

    Helwig A, Mller G, Sberveglieri G, Eickhoff M 2009 J. Sens. 2009 1

    [29]

    Groß A, Beulertz G, Marr I, Kubinski D J, Visser J H, Moos R 2012 Sensors 12 2831

    [30]

    Davydova M, Stuchlik M, Rezek B, Kromka A 2012 Vacuum 86 599

  • [1] Liu Jun-Ling, Bai Yu-Jie, Xu Ning, Zhang Qin-Fang. First-principles study on electronic structure of GaS/Mg(OH)2 heterostructure. Acta Physica Sinica, 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [2] Mo Qiu-Yan, Zhang Song, Jing Tao, Zhang Hong-Yun, Li Xian-Xu, Wu Jia-Yin. First-principles study of surface modification of CuSe. Acta Physica Sinica, 2023, 72(12): 127301. doi: 10.7498/aps.72.20230093
    [3] Yuan Jun-Hui, Xie Qing-Xing, Yu Nian-Nian, Wang Jia-Fu. Effects of surface regulation on monolayers SbAs and BiSb. Acta Physica Sinica, 2016, 65(21): 217101. doi: 10.7498/aps.65.217101
    [4] Zhang Chuan-Guo, Yang Yong, Hao Ting, Zhang Ming. Molecular dynamics simulations on the growth of thin amorphous hydrogenated carbon films on diamond surface. Acta Physica Sinica, 2015, 64(1): 018102. doi: 10.7498/aps.64.018102
    [5] Huang You-Lin, Hou Yu-Hua, Zhao Yu-Jun, Liu Zhong-Wu, Zeng De-Chang, Ma Sheng-Can. Influences of strain on electronic structure and magnetic properties of CoFe2O4 from first-principles study. Acta Physica Sinica, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [6] Zhou Ping, Wang Xin-Qiang, Zhou Mu, Xia Chuan-Hui, Shi Ling-Na, Hu Cheng-Hua. First-principles study of pressure induced phase transition, electronic structure and elastic properties of CdS. Acta Physica Sinica, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [7] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [8] Li Guo-Qi, Zhang Xiao-Chao, Ding Guang-Yue, Fan Cai-Mei, Liang Zhen-Hai, Han Pei-De. Study on the atomic and electronic structures of BiOCl{001} surface using first principles. Acta Physica Sinica, 2013, 62(12): 127301. doi: 10.7498/aps.62.127301
    [9] Song Qing-Gong, Liu Li-Wei, Zhao Hui, Yan Hui-Yu, Du Quan-Guo. First-principles study on the electronic structure and optical properties of YFeO3. Acta Physica Sinica, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [10] Du Yu-Jie, Chang Ben-Kang, Zhang Jun-Ju, Li Biao, Wang Xiao-Hui. First-principles study of the electronic structure and optical properties of GaN(0001) surface. Acta Physica Sinica, 2012, 61(6): 067101. doi: 10.7498/aps.61.067101
    [11] Zheng Li-Si, Feng Miao, Zhan Hong-Bing. Effects of surface modification on nonlinear optical performance of gold nanoparticles. Acta Physica Sinica, 2012, 61(5): 054212. doi: 10.7498/aps.61.054212
    [12] Shi Wei-Wei, Li-Wen, Yi Ming-Dong, Xie Ling-Hai, Wei-Wei, Huang Wei. Progress of the improved mobilities of organic field-effect transistors based on dielectric surface modification. Acta Physica Sinica, 2012, 61(22): 228502. doi: 10.7498/aps.61.228502
    [13] Wang Yu-Mei, Pei Hui-Xia, Ding Jun, Wen Li-Wei. First-principles study of magnetism and electronic structureof Sb-containing half-Heusler alloys. Acta Physica Sinica, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [14] Liu Jian-Jun. First-principles calculation of electronic structure of (Zn,Al)O and analysis of its conductivity. Acta Physica Sinica, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [15] Song Jiu-Xu, Yang Yin-Tang, Liu Hong-Xia, Zhang Zhi-Yong. First-principles study of the electonic structure of nitrogen-doped silicon carbide nanotubes. Acta Physica Sinica, 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [16] Yang Chong, Yang Chun. First-principles study of atomic and electronic structures of the silicon oxide clusters on Si(001) surfaces. Acta Physica Sinica, 2009, 58(8): 5362-5369. doi: 10.7498/aps.58.5362
    [17] Huang Jin-Hua, Zhang Kun, Pan Nan, Gao Zhi-Wei, Wang Xiao-Ping. Enhancing ultraviolet photoresponse of ZnO nanowire device by surface functionalization. Acta Physica Sinica, 2008, 57(12): 7855-7859. doi: 10.7498/aps.57.7855
    [18] Li He, Li Xue-Dong, Li Juan, Wu Chun-Ya, Meng Zhi-Guo, Xiong Shao-Zhen, Zhang Li-Zhu. Investigation on the improvement of the stability and uniformity of solution-based metal-induced crystallization poly-Si using surface-embellishment. Acta Physica Sinica, 2008, 57(4): 2476-2480. doi: 10.7498/aps.57.2476
    [19] Ni Jian-Gang, Liu Nuo, Yang Guo-Lai, Zhang Xi. First-principle study on electronic structure of BaTiO3 (001) surfaces. Acta Physica Sinica, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [20] Pan Zhi-Jun, Zhang Lan-Ting, Wu Jian-Sheng. First-principles study of electronic structure for CoSi. Acta Physica Sinica, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
Metrics
  • Abstract views:  6282
  • PDF Downloads:  213
  • Cited By: 0
Publishing process
  • Received Date:  08 July 2016
  • Accepted Date:  26 August 2016
  • Published Online:  05 December 2016

/

返回文章
返回
Baidu
map