Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Light absorbing structures based on plasmon multi-hybrid effect

Yang Shuai Mao Hai-Yang Bao Ai-Da Guo Xin Li Rui-Rui Yang Yu-Dong Shi Meng Chen Da-Peng

Citation:

Light absorbing structures based on plasmon multi-hybrid effect

Yang Shuai, Mao Hai-Yang, Bao Ai-Da, Guo Xin, Li Rui-Rui, Yang Yu-Dong, Shi Meng, Chen Da-Peng
PDF
HTML
Get Citation
  • In recent years, the polymers represented by macromolecular materials have attracted widespread attention due to their higher flexibility and viscoelastic, compared with other materials used for light absorption (such as semiconductor materials, carbon-based materials and noble metal nanomaterials). Although the polymers have shown potential applications in the photothermal field, compared with other light-absorbing materials, the polymer substrates have a low light absorption rate and a narrow absorption bandwidth concentrated in the visible light band. Therefore, it is necessary to prepare a structure on the polymer material layer for absorbing light, thereby improving the ability of the polymer to absorb light. In addition, since the existing preparation processes of polymer absorption structures require the use of templates and the processes are relatively complicated, there is an urgent need for a simple and easy process to prepare the absorption structures on the polymer material layer. In this article, composite nanoforests are prepared on polymer substrates based on a plasma repolymerization technology and magnetron sputtering process; due to the metallic nanoparticles existing, multi-hybrid plasmonic effect is achieved, thus the average light absorption rate of the polymer in a wavelength range of 380–2500 nm is increased from 23.34% to 74.56%. Such polymer composite nanoforests have high absorption characteristics in a wide spectral range. The method of preparing the structure is quite simple, and can be applied to preparing different polymer materials. Besides, by changing the plasma bombardment time, the morphology of the nanoforests can be adjusted; by increasing the size of the metallic nanoparticles, the absorption of the composite nanoforests can be increased. It is foreseeable that the polymer composite nanoforests will have applications in various optical devices.
      Corresponding author: Mao Hai-Yang, maohaiyang@ime.ac.cn ; Bao Ai-Da, baoaida@nuc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61771467), the High Technology Research and Development Project of Guangdong Province, China (Grant No. 2019B010117001), and the Youth Innovation Promotion Association, Chinese Academy of Sciences, China (Grant No. 2018153).
    [1]

    Fu Y, Mei T, Wang G, Guo A K, Wang X B 2017 Appl. Therm. Eng. 114 961Google Scholar

    [2]

    Liu K K, Jiang Q, Tadepalli S, Raliya R, Naik R R 2017 ACS Appl. Mater. Interfaces 9 7675Google Scholar

    [3]

    Kashyap V, Al-Bayati A, Sajadi S M, Irajizad P, Wang S H 2017 J. Mater. Chem. A 5 15227Google Scholar

    [4]

    Liu T, Li Y 2016 Nat. Photonics 10 361Google Scholar

    [5]

    Chen H, Blaber M G, Standridge S D, Demarco E J, Hupp J T, Ratner M A 2012 J. Phys. Chem. C 116 10215Google Scholar

    [6]

    Yu X, Fu Y, Cai X, Kafafy H, Zou D 2013 Nano Energy 2 1242Google Scholar

    [7]

    Lv Y, Cai B, Wu Y, Wang S, Jiang Q, Ma Q 2018 J. Energy Chem. 27 951Google Scholar

    [8]

    Henrik L 2007 Energy 32 912Google Scholar

    [9]

    Kuo M, Lo W 2014 IEEE Trans. Ind. Appl. 50 2818Google Scholar

    [10]

    Yu Y, Huang L, Cao L 2014 Sci. Rep. 4 4107Google Scholar

    [11]

    Xue G, Liu K, Chen Q, Yang P, Li J, Ding T 2017 ACS Appl. Mater. Interfaces 9 15052Google Scholar

    [12]

    Luo X, Huang C, Liu S, Zhong J 2018 Int. J. Energy Res. 42 4830Google Scholar

    [13]

    Olson T Y, Zhang J Z 2008 J. Mater. Sci. Technol. 24 433Google Scholar

    [14]

    Gesquiere A J 2010 J. Am. Chem. Soc. 132 3637Google Scholar

    [15]

    Rinke P, Scheffler M, Qteish A, Winkelnkemper M, Bimberg D, Neugebauer J 2006 Appl. Phys. Lett. 89 161919Google Scholar

    [16]

    Mao H, Ou W 2015 US Patent 9 117 949

    [17]

    Zhu L, Gao M, Peh C K N, Wang X, Ho G W 2018 Adv. Energy Mater. 6 14571Google Scholar

    [18]

    Tran V T, Kim J, Tufa L T, Oh S, Kwon J, Lee J 2017 Anal. Chem. 90 225Google Scholar

    [19]

    Li C, Jiang D, Huo B, Ding M, Huang C, Jia D 2019 Nano Energy 60 841Google Scholar

    [20]

    Chen Y, Elshobaki M, Ye Z, Park J M, Noack M A, Ho K M 2013 Phys. Chem. Chem. Phys. 15 4297Google Scholar

    [21]

    Liu Y R, Shang X, Gao W K, Dong B, Li X, Li X H 2017 J. Mater. Chem. A 5 2885Google Scholar

    [22]

    Ostfeld A E, Pacifici D 2011 Appl. Phys. Lett. 98 113112.1Google Scholar

    [23]

    Cao Y, Du P, Qiao Y 2014 Appl. Phys. Lett. 105 153902.1

    [24]

    Lv Y, Cai B, Wu Y, Wang S, Jiang Q, Ma Q 2018 Journal of Energy Chemistry 27 951

    [25]

    Yu Y, Huang L, Cao L 2014 Scientific Reports 4 4107

    [26]

    Lin Q, Lu L, Tavakoli M M, Zhang C, Lui G C, Chen Z 2016 Nano Energy 22 539Google Scholar

    [27]

    Wang Y, Tang L, Mao H, Lei C, Ou W, Xiong J, Wang W, Wang L, Hu J 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS) Shanghai, China, January 24−28, 2016 p1185

    [28]

    Auer S, Frenkel D 2001 Nature 413 711Google Scholar

    [29]

    Han K M, Cho J S, Yoo J 2015 Vacuum 115 85Google Scholar

    [30]

    Linbao L, Di W, Chao X, Jigang H, Xingyuan Z, Fengxia L 2019 Adv. Funct. Mater. 29 1900849Google Scholar

    [31]

    Meng L, Zhang Y, Yam C Y 2017 J. Phys. Chem. Lett. 8 571Google Scholar

    [32]

    Shalchian M, Grisolia J, Assayag G B, Coffin H, Atarodi S M, Claverie A 2005 Appl. Phys. Lett. 86 163111Google Scholar

    [33]

    Park Y, Berger J, Tang Z, Mueller-Meskamp L, Lasagni A F, Vandewal K 2016 Appl. Phys. Lett. 109 093301Google Scholar

    [34]

    Yu A, Bumai N I, Dolgikh A A, Kharchenko V F, Valeev V I, Nuzhdin R I 2014 J. Appl. Spectrosc. 81 188Google Scholar

    [35]

    Gesquiere A J 2010 J. Am. Chem. Soc. 132 400

    [36]

    Thongrattanasiri S, Koppens F H L, Abajo F J G D 2012 Phys. Rev. Lett. 108 047401Google Scholar

    [37]

    Duan H G, Fernández-Domínguez A I, Bosman M 2012 Nano Lett. 12 1683Google Scholar

    [38]

    Hu Y, LaPierre R R, Li M 2012 J. Appl. Phys. 112 104311Google Scholar

    [39]

    Kim S K, Ee H S, Choi W, Kwon S H, Kang J H, Kim Y H 2011 Appl. Phys. Lett. 98 011109Google Scholar

    [40]

    Hillenbrand R, Taubner T, Keilmann F 2002 Nature 418 159Google Scholar

    [41]

    Zhou L, Tan Y, Ji D, Zhu B, Zhang P, Xu J 2016 Sci. Adv. 2 e1501227Google Scholar

    [42]

    Zhou L, Tan Y, Wang J 2016 Nat. Photonics 10 393Google Scholar

    [43]

    Liang J, Liu H, Yu J, Zhou L, Zhu J 2019 Nanophotonics 8 771Google Scholar

  • 图 1  在PI表面上制备纳米纤维森林结构的工艺流程及各步骤所获得结构的SEM图 (a) 未经处理的PI表面SEM图; (b) 30 min氧等离子体轰击后PI表面的SEM图; (c) 30 min氩等离子体轰击后PI表面的SEM图; (d) 30 min氧和30 min氩等离子体依次轰击后PI表面的SEM图

    Figure 1.  Preparation process and SEM images of nanofiber forests on the surface of PI substrate: (a) SEM image of untreated PI surface; (b) SEM image of PI surface bombarded by 30 min oxygen plasma; (c) SEM image of PI surface bombarded by 30 min argon plasma; (d) SEM image of PI surface bombarded by 30 min oxygen and 30 min argon plasma.

    图 2  纳米纤维森林结构的平均高度与氧等离子体轰击时间之间的关系曲线

    Figure 2.  The plot of the average height of nanofiber forests at different etching time of oxygen plasma.

    图 3  复合纳米森林光吸收结构的制备工艺流程 (a)纳米纤维森林结构; (b) 材料层背面溅射金纳米薄膜层; (c)纳米纤维森林结构表面溅射金纳米颗粒

    Figure 3.  Preparation process of the composite nanoforests: (a) Nanofiber forests; (b) Au nanofilm sputtering on the back; (c) Au nanoparticle sputtering on surface of the composite nanoforests.

    图 4  复合纳米森林光吸收结构表面100个金纳米颗粒尺寸分布直方图(插图为金纳米颗粒分布SEM照片)

    Figure 4.  The size distribution histogram of 100 gold nanoparticles on surface of the composite nanoforests (inset shows the gold nanoparticle distribution around a nanofiber).

    图 5  具有不同高度纳米纤维森林结构的PI材料层的吸收谱图(插图为不同时间氧等离子体轰击后PI表面的SEM照片)

    Figure 5.  Absorption spectra and the SEM images (inset) of PI nanofiber forests with different heights.

    图 6  PI光吸收结构的吸收谱图 (a) 不同时间氧等离子体轰击后的PI复合纳米森林结构的光吸收率; (b)不同PI光吸收结构的光吸收率

    Figure 6.  Absorption spectra of PI: (a) Composite nanoforests after different periods of bombardment; (b) different structures.

    图 7  表面分布着不同粒径尺寸金纳米颗粒的PI复合纳米森林结构光吸收率 (a) 吸收谱图; (b) 光吸收率与金纳米颗粒粒径之间的关系曲线(插图为SEM图及样品照片)

    Figure 7.  Absorption rate of PI composite nanoforests with gold nanoparticles of different sizes: (a) Absorption spectra; (b) the change curve of light absorption rate of nanoforests with gold nanoparticles of different sizes (insets show images of the sample).

    图 8  相同工艺条件下不同聚合物光吸收结构的吸收谱图 (a)制备纳米纤维森林结构前不同聚合物的吸收谱; (b)制备了复合纳米森林结构后的不同聚合物的吸收谱(插图为SEM照片)

    Figure 8.  Absorption spectra of different polymers: (a) Without nanoforests; (b) with composite nanoforests (inset show the corresponding SEM images).

    图 9  三种聚合物在表面制备复合纳米森林结构前后光吸收率的对比

    Figure 9.  Light absorption curves of three polymers before and after preparation of composite nanoforests.

    图 10  不同结构的电磁场增强FDTD仿真分析 (a) 基底表面电磁场分布; (b) 纳米纤维森林结构周围的电磁场分布; (c) 复合纳米森林结构周围的电磁场分布

    Figure 10.  FDTD simulation analysis of different structures: (a) Distribution of electric field on the substrate surface; (b) distribution of electric field around a nanofiber; (c) distribution of electric field around a composite nanofiber.

    Baidu
  • [1]

    Fu Y, Mei T, Wang G, Guo A K, Wang X B 2017 Appl. Therm. Eng. 114 961Google Scholar

    [2]

    Liu K K, Jiang Q, Tadepalli S, Raliya R, Naik R R 2017 ACS Appl. Mater. Interfaces 9 7675Google Scholar

    [3]

    Kashyap V, Al-Bayati A, Sajadi S M, Irajizad P, Wang S H 2017 J. Mater. Chem. A 5 15227Google Scholar

    [4]

    Liu T, Li Y 2016 Nat. Photonics 10 361Google Scholar

    [5]

    Chen H, Blaber M G, Standridge S D, Demarco E J, Hupp J T, Ratner M A 2012 J. Phys. Chem. C 116 10215Google Scholar

    [6]

    Yu X, Fu Y, Cai X, Kafafy H, Zou D 2013 Nano Energy 2 1242Google Scholar

    [7]

    Lv Y, Cai B, Wu Y, Wang S, Jiang Q, Ma Q 2018 J. Energy Chem. 27 951Google Scholar

    [8]

    Henrik L 2007 Energy 32 912Google Scholar

    [9]

    Kuo M, Lo W 2014 IEEE Trans. Ind. Appl. 50 2818Google Scholar

    [10]

    Yu Y, Huang L, Cao L 2014 Sci. Rep. 4 4107Google Scholar

    [11]

    Xue G, Liu K, Chen Q, Yang P, Li J, Ding T 2017 ACS Appl. Mater. Interfaces 9 15052Google Scholar

    [12]

    Luo X, Huang C, Liu S, Zhong J 2018 Int. J. Energy Res. 42 4830Google Scholar

    [13]

    Olson T Y, Zhang J Z 2008 J. Mater. Sci. Technol. 24 433Google Scholar

    [14]

    Gesquiere A J 2010 J. Am. Chem. Soc. 132 3637Google Scholar

    [15]

    Rinke P, Scheffler M, Qteish A, Winkelnkemper M, Bimberg D, Neugebauer J 2006 Appl. Phys. Lett. 89 161919Google Scholar

    [16]

    Mao H, Ou W 2015 US Patent 9 117 949

    [17]

    Zhu L, Gao M, Peh C K N, Wang X, Ho G W 2018 Adv. Energy Mater. 6 14571Google Scholar

    [18]

    Tran V T, Kim J, Tufa L T, Oh S, Kwon J, Lee J 2017 Anal. Chem. 90 225Google Scholar

    [19]

    Li C, Jiang D, Huo B, Ding M, Huang C, Jia D 2019 Nano Energy 60 841Google Scholar

    [20]

    Chen Y, Elshobaki M, Ye Z, Park J M, Noack M A, Ho K M 2013 Phys. Chem. Chem. Phys. 15 4297Google Scholar

    [21]

    Liu Y R, Shang X, Gao W K, Dong B, Li X, Li X H 2017 J. Mater. Chem. A 5 2885Google Scholar

    [22]

    Ostfeld A E, Pacifici D 2011 Appl. Phys. Lett. 98 113112.1Google Scholar

    [23]

    Cao Y, Du P, Qiao Y 2014 Appl. Phys. Lett. 105 153902.1

    [24]

    Lv Y, Cai B, Wu Y, Wang S, Jiang Q, Ma Q 2018 Journal of Energy Chemistry 27 951

    [25]

    Yu Y, Huang L, Cao L 2014 Scientific Reports 4 4107

    [26]

    Lin Q, Lu L, Tavakoli M M, Zhang C, Lui G C, Chen Z 2016 Nano Energy 22 539Google Scholar

    [27]

    Wang Y, Tang L, Mao H, Lei C, Ou W, Xiong J, Wang W, Wang L, Hu J 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS) Shanghai, China, January 24−28, 2016 p1185

    [28]

    Auer S, Frenkel D 2001 Nature 413 711Google Scholar

    [29]

    Han K M, Cho J S, Yoo J 2015 Vacuum 115 85Google Scholar

    [30]

    Linbao L, Di W, Chao X, Jigang H, Xingyuan Z, Fengxia L 2019 Adv. Funct. Mater. 29 1900849Google Scholar

    [31]

    Meng L, Zhang Y, Yam C Y 2017 J. Phys. Chem. Lett. 8 571Google Scholar

    [32]

    Shalchian M, Grisolia J, Assayag G B, Coffin H, Atarodi S M, Claverie A 2005 Appl. Phys. Lett. 86 163111Google Scholar

    [33]

    Park Y, Berger J, Tang Z, Mueller-Meskamp L, Lasagni A F, Vandewal K 2016 Appl. Phys. Lett. 109 093301Google Scholar

    [34]

    Yu A, Bumai N I, Dolgikh A A, Kharchenko V F, Valeev V I, Nuzhdin R I 2014 J. Appl. Spectrosc. 81 188Google Scholar

    [35]

    Gesquiere A J 2010 J. Am. Chem. Soc. 132 400

    [36]

    Thongrattanasiri S, Koppens F H L, Abajo F J G D 2012 Phys. Rev. Lett. 108 047401Google Scholar

    [37]

    Duan H G, Fernández-Domínguez A I, Bosman M 2012 Nano Lett. 12 1683Google Scholar

    [38]

    Hu Y, LaPierre R R, Li M 2012 J. Appl. Phys. 112 104311Google Scholar

    [39]

    Kim S K, Ee H S, Choi W, Kwon S H, Kang J H, Kim Y H 2011 Appl. Phys. Lett. 98 011109Google Scholar

    [40]

    Hillenbrand R, Taubner T, Keilmann F 2002 Nature 418 159Google Scholar

    [41]

    Zhou L, Tan Y, Ji D, Zhu B, Zhang P, Xu J 2016 Sci. Adv. 2 e1501227Google Scholar

    [42]

    Zhou L, Tan Y, Wang J 2016 Nat. Photonics 10 393Google Scholar

    [43]

    Liang J, Liu H, Yu J, Zhou L, Zhu J 2019 Nanophotonics 8 771Google Scholar

  • [1] Yang Xiao-Jie, Xu Hui, Xu Hai-Ye, Li Ming, Yu Hong-Fei, Cheng Yu-Xuan, Hou Hai-Liang, Chen Zhi-Quan. Sensing and slow light applications of graphene plasmonic terahertz structure. Acta Physica Sinica, 2024, 73(15): 157802. doi: 10.7498/aps.73.20240668
    [2] Wang Yue, Wang Lun, Sun Bai-Xun, Lang Peng, Xu Yang, Zhao Zhen-Long, Song Xiao-Wei, Ji Bo-Yu, Lin Jing-Quan. Near-field control of gold nanostructure under joint action of surface plasmon polariton and incident light. Acta Physica Sinica, 2023, 72(17): 175202. doi: 10.7498/aps.72.20230514
    [3] Yan Xiao-Hong, Niu Yi-Jie, Xu Hong-Xing, Wei Hong. Strong coupling of single plasmonic nanoparticles and nanogaps with quantum emitters. Acta Physica Sinica, 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [4] Jiang Yue, Wang Shu-Ying, Wang Zhi-Ye, Zhou Hua, Ka Ma-Le, Zhao Song, Shen Xiang-Qian. Plasmon modes of fishnet metastructure and its trapping and control of light for thin film solar cells. Acta Physica Sinica, 2021, 70(21): 218801. doi: 10.7498/aps.70.20210693
    [5] Zhang Duo-Duo, Liu Xiao-Feng, Qiu Jian-Rong. Ultrafast optical switches and pulse lasers based on strong nonlinear optical response of plasmon nanostructures. Acta Physica Sinica, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [6] Yin Yun-Qiao, Wu Hong-Wei. Magnetic mirror metasurfaces based on spoof surface plasmonic structures. Acta Physica Sinica, 2020, 69(23): 234101. doi: 10.7498/aps.69.20200514
    [7] Liu Liang, Han De-Zhuan, Shi Lei. Plasmonic band structures and its applications. Acta Physica Sinica, 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [8] Zhao Cheng-Xiang, Qie Yuan, Yu Yao, Ma Rong-Rong, Qin Jun-Fei, Liu Yan. Enhanced optical absorption of graphene by plasmon. Acta Physica Sinica, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [9] Chen Lu, Chen Yue-Gang. Surface plasmon polaritons’ propagation controlled by metal-photorefractive material composite holographical structure. Acta Physica Sinica, 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [10] Quan Jia-Qi, Sheng Zong-Qiang, Wu Hong-Wei. Omnidirectional cloaking based on spoof surface plasmonic structure. Acta Physica Sinica, 2019, 68(15): 154101. doi: 10.7498/aps.68.20190283
    [11] Qi Yun-Ping, Zhou Pei-Yang, Zhang Xue-Wei, Yan Chun-Man, Wang Xiang-Xian. Enhanced optical transmission by exciting hybrid states of Tamm and surface plasmon polaritons in single slit with multi-pair groove nanostructure. Acta Physica Sinica, 2018, 67(10): 107104. doi: 10.7498/aps.67.20180117
    [12] Wang Chao, Li Yong-Feng, Shen Yang, Feng Mao-Chang, Wang Jia-Fu, Ma Hua, Zhang Jie-Qiu, Qu Shao-Bo. Design of dual-band-pass frequency selective structure based on spoof surface plasmon polariton. Acta Physica Sinica, 2018, 67(20): 204101. doi: 10.7498/aps.67.20180696
    [13] Zhang Chong-Lei, Xin Zi-Qiang, Min Chang-Jun, Yuan Xiao-Cong. Research progress of plasmonic structure illumination microscopy. Acta Physica Sinica, 2017, 66(14): 148701. doi: 10.7498/aps.66.148701
    [14] Ma Ping-Ping, Zhang Jie, Liu Huan-Huan, Zhang Jing, Xu Yong-Gang, Wang Jiang, Zhang Meng-Qiao, Li Yong-Fang. Plasmon induced transparency in the trimer of gold nanorods. Acta Physica Sinica, 2016, 65(21): 217801. doi: 10.7498/aps.65.217801
    [15] Xue Bin, Wang Hong-Yang, Qin Meng, Cao Yi, Wang Wei. A photocatalysis system based on composite nanostructures of controlable peptide nanotubes and graphene. Acta Physica Sinica, 2015, 64(9): 098702. doi: 10.7498/aps.64.098702
    [16] Li Jia-Ming, Tang Peng, Wang Jia-Jian, Huang Tao, Lin Feng, Fang Zhe-Yu, Zhu Xing. Focusing surface plasmon polaritons in archimedes' spiral nanostructure. Acta Physica Sinica, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [17] Zhang Yong-Yuan, Luo Li-Na, Zhang Zhong-Yue. Surface plasmon polaritons splitting properties of silver cross nanowires. Acta Physica Sinica, 2015, 64(9): 097303. doi: 10.7498/aps.64.097303
    [18] Li Guo-Long, Li Jin. The light absorption enhancement in polymer solar cells with periodic nano-structures gratings. Acta Physica Sinica, 2012, 61(20): 207204. doi: 10.7498/aps.61.207204
    [19] Song Wen-Tao, Lin Feng, Fang Zhe-Yu, Zhu Xing. Nanofocusing by phase delayed plasmonic nanostructures illuminated with a linearly polarized light. Acta Physica Sinica, 2010, 59(10): 6921-6926. doi: 10.7498/aps.59.6921
    [20] Zhang Yun, Zhang Bo-Ping, Jiao Li-Shi, Li Xiang-Yang. Microstructure and photoabsorption of Au/SiO2 nano-composite films. Acta Physica Sinica, 2006, 55(4): 2078-2083. doi: 10.7498/aps.55.2078
Metrics
  • Abstract views:  5589
  • PDF Downloads:  96
  • Cited By: 0
Publishing process
  • Received Date:  10 September 2020
  • Accepted Date:  19 October 2020
  • Available Online:  06 February 2021
  • Published Online:  20 February 2021

/

返回文章
返回
Baidu
map