搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于人工表面等离激元的双通带频率选择结构设计

王超 李勇峰 沈杨 丰茂昌 王甲富 马华 张介秋 屈绍波

引用本文:
Citation:

基于人工表面等离激元的双通带频率选择结构设计

王超, 李勇峰, 沈杨, 丰茂昌, 王甲富, 马华, 张介秋, 屈绍波

Design of dual-band-pass frequency selective structure based on spoof surface plasmon polariton

Wang Chao, Li Yong-Feng, Shen Yang, Feng Mao-Chang, Wang Jia-Fu, Ma Hua, Zhang Jie-Qiu, Qu Shao-Bo
PDF
导出引用
  • 本文提出了一种基于人工表面等离激元的频率选择结构的设计方法:将设计的频率选择表面和金属鱼骨结构阵列相结合得到一种新的频率选择结构.文中采用这种方法设计了一种具有陡截止和高透、高抑制性能的双通带频率选择结构.该结构由金属鱼骨结构阵列和上下两层相同的频率选择表面复合而成.通过仿真可得,该结构的两个通带频率范围分别是3.04.1和10.510.9 GHz,透射率均在-0.5 dB以上.透射率低于-10 dB的频率范围是4.79.2和12.118 GHz.在12.415.5 GHz频率范围内,该结构的透射率甚至低于-20 dB.在通带内,电磁波可以高效地透过该结构;在阻带内,该结构对电磁波的透射具有较好的抑制作用.测试结果表明用这种方法设计出的频率选择结构的实际性能和仿真基本一致.在金属鱼骨结构空隙中填入轻质泡沫后该结构具有一定的力学承载性能,可以实现结构功能一体化的设计.
    In this paper, a method of designing the frequency selective structure based on spoof surface plasmon polariton (SSPP) is proposed and demonstrated. According to the applications in different working bands, the designed frequency selective surface (FSS) and metallic fishbone structure array can be combined together to form a new frequency selective structure and satisfy the requirements for practical applications. Meanwhile, a dual-band-pass frequency selective structure with the property of steep cut-off frequency and high-efficiency transmission and inhibition is designed by using this method. The dual-band-pass frequency selective structure is composed of a metallic fishbone structure array and two identical FSSs. The metallic fishbone structure based on SSPP coupling can form a broadband high-efficiency transmission below the cut-off frequency of SSPP on the metallic fishbone structure. When a dual-band-pass FSS is loaded to this metallic fishbone structure array, a dual-band-pass frequency selective structure can be achieved. To improve the impedance matching of the dual-band-pass frequency selective structure, two identical FSSs are respectively loaded to the top and bottom sides of the metallic fishbone structure array. The simulated transmissivities of the dual-band-pass frequency selective structure exceed-0.5 dB in two frequency ranges:3.0-4.1 GHz and 10.5-10.9 GHz. The simulated transmissivities are lower than-10 dB in other frequency ranges:4.7-9.2 GHz and 12.1-18 GHz. The simulated transmissivities are even below-20 dB from 12.4 GHz to 15.5 GHz. The electromagnetic waves can be efficiently transmitted in the passband and restrained in the stopband. Then the dual-band-pass frequency selective structure is fabricated by using the printed circuit board technique and measured in the anechoic chamber. The measured results indicate that the real property of the dual-band-pass frequency selective structure is consistent with the simulated property and this method of designing the frequency selective structure is feasible. After filling the lightweight foam into the gap of the metallic fishbone structure, the mechanical loading property can be highly improved. Therefore, we can realize the design of combined structural and functional performance.
      通信作者: 李勇峰, liyf217130@126.com
    • 基金项目: 国家自然科学基金(批准号:61331005,61471388,61501503)和陕西省自然科学基金(批准号:2017JM6005)资助的课题.
      Corresponding author: Li Yong-Feng, liyf217130@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61331005, 61471388, 61501503) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2017JM6005).
    [1]

    Lu G W, Zhang J, Yang J Y, Zhang T X, Kou Y 2013 Acta Phys. Sin. 62 198401 (in Chinese)[鲁戈舞, 张剑, 杨洁颖, 张天翔, 寇元 2013 62 198401]

    [2]

    Sarabandi K, Behdad N 2007 IEEE Trans. Antennas Propag. 55 1239

    [3]

    Salehi M, Behdad N 2008 IEEE Microwave Wireless Compon. Lett. 18 785

    [4]

    Behdad N, Aljoumayly M A, Salehi M 2009 IEEE Trans. Antennas Propag. 57 460

    [5]

    Aljoumayly M A, Behdad N 2010 IEEE Trans. Antennas Propag. 58 4042

    [6]

    Wang S S, Gao J S, Liang F C, Wang Y S, Chen X 2011 Acta Phys. Sin 60 050703 (in Chinese)[王珊珊, 高劲松, 梁凤超, 王岩松, 陈新 2011 60 050703]

    [7]

    Luo G Q, Hong W, Hao Z C, Liu B, Li W D, Chen J X, Zhou H X, Wu K 2005 IEEE Trans. Antennas Propag. 53 4035

    [8]

    Luo G Q, Hong W, Lai Q H, Wu K, Sun L L 2007 IEEE Trans. Microwave Theory Tech. 55 2481

    [9]

    Luo G Q, Hong W, Tang H J, Chen J X, Yin X X, Kuai Z Q, Wu K 2007 IEEE Trans. Antennas Propag. 55 92

    [10]

    Luo G Q, Hong W, Lai Q H, Sun L L 2008 IET Microwaves Antennas Propag. 2 23

    [11]

    Zuo Y, Shen Z X, Feng Y J 2014 Chin. Phys. B 23 034101

    [12]

    Huang F X, Batchelor J C, Parker E A 2006 Electron. Lett. 42 788

    [13]

    Pendry J B, Martinmoreno L, Garciavidal F J 2004 Science 305 847

    [14]

    Ma H F, Shen X P, Cheng Q, Jiang W X, Cui T J 2014 Laser Photonics Rev. 8 146

    [15]

    Shen X P, Cui T J, Martincano D, Garciavidal F J 2013 PANS 110 40

    [16]

    Gao X, Shi J H, Ma H F, Jiang W X, Cui T J 2012 J. Phys. D: Appl. Phys. 45 505104

    [17]

    Shen X P, Cui T J 2013 Appl. Phys. Lett. 102 211909

    [18]

    Li Y F, Ma H, Wang J F, Pang Y Q, Zheng Q Q, Chen H Y, Han Y J, Zhang J Q, Qu S B 2017 Sci. Rep. 7 40727

    [19]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Feng M D, Wang J, Xu Z 2016 Opt. Express 24 842

    [20]

    Fu W Y, Han Y C, Li J D, Wang H S, Li H P, Han K, Shen X P, Cui T J 2016 J. Phys. D: Appl. Phys. 49 285110

  • [1]

    Lu G W, Zhang J, Yang J Y, Zhang T X, Kou Y 2013 Acta Phys. Sin. 62 198401 (in Chinese)[鲁戈舞, 张剑, 杨洁颖, 张天翔, 寇元 2013 62 198401]

    [2]

    Sarabandi K, Behdad N 2007 IEEE Trans. Antennas Propag. 55 1239

    [3]

    Salehi M, Behdad N 2008 IEEE Microwave Wireless Compon. Lett. 18 785

    [4]

    Behdad N, Aljoumayly M A, Salehi M 2009 IEEE Trans. Antennas Propag. 57 460

    [5]

    Aljoumayly M A, Behdad N 2010 IEEE Trans. Antennas Propag. 58 4042

    [6]

    Wang S S, Gao J S, Liang F C, Wang Y S, Chen X 2011 Acta Phys. Sin 60 050703 (in Chinese)[王珊珊, 高劲松, 梁凤超, 王岩松, 陈新 2011 60 050703]

    [7]

    Luo G Q, Hong W, Hao Z C, Liu B, Li W D, Chen J X, Zhou H X, Wu K 2005 IEEE Trans. Antennas Propag. 53 4035

    [8]

    Luo G Q, Hong W, Lai Q H, Wu K, Sun L L 2007 IEEE Trans. Microwave Theory Tech. 55 2481

    [9]

    Luo G Q, Hong W, Tang H J, Chen J X, Yin X X, Kuai Z Q, Wu K 2007 IEEE Trans. Antennas Propag. 55 92

    [10]

    Luo G Q, Hong W, Lai Q H, Sun L L 2008 IET Microwaves Antennas Propag. 2 23

    [11]

    Zuo Y, Shen Z X, Feng Y J 2014 Chin. Phys. B 23 034101

    [12]

    Huang F X, Batchelor J C, Parker E A 2006 Electron. Lett. 42 788

    [13]

    Pendry J B, Martinmoreno L, Garciavidal F J 2004 Science 305 847

    [14]

    Ma H F, Shen X P, Cheng Q, Jiang W X, Cui T J 2014 Laser Photonics Rev. 8 146

    [15]

    Shen X P, Cui T J, Martincano D, Garciavidal F J 2013 PANS 110 40

    [16]

    Gao X, Shi J H, Ma H F, Jiang W X, Cui T J 2012 J. Phys. D: Appl. Phys. 45 505104

    [17]

    Shen X P, Cui T J 2013 Appl. Phys. Lett. 102 211909

    [18]

    Li Y F, Ma H, Wang J F, Pang Y Q, Zheng Q Q, Chen H Y, Han Y J, Zhang J Q, Qu S B 2017 Sci. Rep. 7 40727

    [19]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Feng M D, Wang J, Xu Z 2016 Opt. Express 24 842

    [20]

    Fu W Y, Han Y C, Li J D, Wang H S, Li H P, Han K, Shen X P, Cui T J 2016 J. Phys. D: Appl. Phys. 49 285110

  • [1] 孙淑鹏, 程用志, 罗辉, 陈浮, 杨玲玲, 李享成. 基于人工表面等离激元的小型化电可调缺口带滤波器.  , 2024, 73(3): 034101. doi: 10.7498/aps.73.20231447
    [2] 王悦, 王伦, 孙柏逊, 郎鹏, 徐洋, 赵振龙, 宋晓伟, 季博宇, 林景全. 表面等离激元与入射光共同作用下的金纳米结构近场调控.  , 2023, 72(17): 175202. doi: 10.7498/aps.72.20230514
    [3] 孙淑鹏, 程用志, 罗辉, 陈浮, 李享成. 基于戟形人工表面等离激元的紧凑型宽带外抑制带通滤波器.  , 2023, 72(6): 064101. doi: 10.7498/aps.72.20222291
    [4] 罗宇轩, 程用志, 陈浮, 罗辉, 李享成. 基于沙漏形人工表面等离激元和交指电容结构的双频滤波器设计.  , 2023, 72(4): 044101. doi: 10.7498/aps.72.20221984
    [5] 刘亮, 韩德专, 石磊. 等离激元能带结构与应用.  , 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [6] 殷允桥, 吴宏伟. 基于人工表面等离激元结构的超表面磁镜.  , 2020, 69(23): 234101. doi: 10.7498/aps.69.20200514
    [7] 王晓雷, 赵洁惠, 李淼, 姜光科, 胡晓雪, 张楠, 翟宏琛, 刘伟伟. 基于人工表面等离激元探针实现太赫兹波的紧聚焦和场增强.  , 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [8] 周强, 林树培, 张朴, 陈学文. 旋转对称表面等离激元结构中极端局域光场的准正则模式分析.  , 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [9] 谌璐, 陈跃刚. 金属-光折变材料复合全息结构对表面等离激元的波前调控.  , 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [10] 权家琪, 圣宗强, 吴宏伟. 基于人工表面等离激元结构的全向隐身.  , 2019, 68(15): 154101. doi: 10.7498/aps.68.20190283
    [11] 祁云平, 周培阳, 张雪伟, 严春满, 王向贤. 基于塔姆激元-表面等离极化激元混合模式的单缝加凹槽纳米结构的增强透射.  , 2018, 67(10): 107104. doi: 10.7498/aps.67.20180117
    [12] 张崇磊, 辛自强, 闵长俊, 袁小聪. 表面等离激元结构光照明显微成像技术研究进展.  , 2017, 66(14): 148701. doi: 10.7498/aps.66.148701
    [13] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦.  , 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [14] 张永元, 罗李娜, 张中月. 十字结构银纳米线的表面等离极化激元分束特性.  , 2015, 64(9): 097303. doi: 10.7498/aps.64.097303
    [15] 刘海文, 占昕, 任宝平. 射电天文用太赫兹三通带频率选择表面设计.  , 2015, 64(17): 174103. doi: 10.7498/aps.64.174103
    [16] 鲍迪, 沈晓鹏, 崔铁军. 太赫兹人工电磁媒质研究进展.  , 2015, 64(22): 228701. doi: 10.7498/aps.64.228701
    [17] 王秀芝, 高劲松, 徐念喜. 利用等效电路模型快速分析加载集总元件的微型化频率选择表面.  , 2013, 62(20): 207301. doi: 10.7498/aps.62.207301
    [18] 王秀芝, 高劲松, 徐念喜. 利用集总LC元件实现频率选择表面极化分离的特性.  , 2013, 62(14): 147307. doi: 10.7498/aps.62.147307
    [19] 王秀芝, 高劲松, 徐念喜. Ku/Ka波段双通带频率选择表面雷达罩设计研究.  , 2013, 62(23): 237302. doi: 10.7498/aps.62.237302
    [20] 王秀芝, 高劲松, 徐念喜. Ku/Ka波段双通带频率选择表面设计研究.  , 2013, 62(16): 167307. doi: 10.7498/aps.62.167307
计量
  • 文章访问数:  6710
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-15
  • 修回日期:  2018-05-22
  • 刊出日期:  2019-10-20

/

返回文章
返回
Baidu
map