Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Enhanced optical transmission by exciting hybrid states of Tamm and surface plasmon polaritons in single slit with multi-pair groove nanostructure

Qi Yun-Ping Zhou Pei-Yang Zhang Xue-Wei Yan Chun-Man Wang Xiang-Xian

Citation:

Enhanced optical transmission by exciting hybrid states of Tamm and surface plasmon polaritons in single slit with multi-pair groove nanostructure

Qi Yun-Ping, Zhou Pei-Yang, Zhang Xue-Wei, Yan Chun-Man, Wang Xiang-Xian
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In recent years, a metallic single slit nanostructure or slit array structure, due to simple structure and easy-to integration, has been used to construct a light source in the nanostructures based on the surface plasmon polaritons (SPPs). However, the problem of low transmission through an isolated subwavelength single slit nanostructure is still existent. The main reason is that the excitation efficiency of SPPs in the single slit nanostructure is not too high. Therefore, how to effectively enhance the optical transmission has become a research focus. In order to further improve the transmittance of the metallic single slit nanostructure, in this paper, we improve the single slit nanostructure imbedded in the metal silver thin film on a distributed Bragg reflector (DBR) proposed in previous literature. As a result, a novel method of designing a single slit on a DBR is proposed to effectively enhance the optical transmission in a single slit by improving the excitation efficiency of SPPs. Our proposed novel structure is made up of a subwavelength single nano-slit surrounded symmetrically by a pair of grooves on both sides of metal silver film on a distributed Bragg reflector. When the TM polarized light is illuminated from the DBR side of our proposed structure to the DBR-silver slit-grooves nanostructure, the Tamm plasmon polaritons (TPPs) at the interface between the silver film and the DBR and the SPPs in the slit on the entrance side of the silver film are excited at the DBR-silver film interface, and the SPPs in the slit and grooves pair on the exit side of the silver film are excited simultaneously. In our proposed structure, coupling between the TPPs and the SPPs leads to the hybrid state of Tamm and surface plasmon polaritons in the slit and grooves. Finally, taking advantage of constructive interference between SPPs excited by the grooves and exciting hybrid states of TPPs-SPPs in the slit, due to the local field enhancement effect of the TPPs mode and the coupling effect of constructive interference between the pair grooves and the nano-slit, the excitation efficiency of the SPPs can be increased significantly. Furthermore, the quasi Fabry-Pérot resonance effect in the nano-slit is taken into consideration, and the transmittance of our proposed structure is enhanced greatly. In the present paper, the finite element method is used to study the transmission properties of the single nano-slit embedded with paired grooves on the DBR-sliver nanostructure. After a series of parameters are optimized, the maximum transmittance through the single slit in DBR-silver slit-groove nanostructure can increase to 0.22, and this transmittance is expected to be about 22 times the transmittance (0.01) of the light through a single slit in a silver film on the TiO2 substrate (without DBR and grooves), which is higher than the maximum light transsmission 0.166 given in Ref.[23]. The research results of this study have a certain application value in the fields of nano-light source design, photonic integrated circuits and optical signal transmission and so on.
      Corresponding author: Qi Yun-Ping, yunpqi@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61367005, 61741119) and the Natural Science Foundation of Gansu Province, China (Grant No. 17JR5RA078).
    [1]

    Ritchie R H 1957 Phys. Rev. 106 874

    [2]

    Parsons J, Hendry E, Burrows C P, Auguie B, Sambles J R, Barnes W L 2009 Phys. Rev. B 79 073412

    [3]

    Otto A 1968 Z. Phys. 216 398

    [4]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667

    [5]

    Lezec H J, Degiron A, Devaux E, Linke R A, Martinmoreno L, Garciavidal F J, Ebbesen T W 2002 Science 297 820

    [6]

    Genet C, Ebbesen T W 2014 Nature 445 39

    [7]

    Moreau A, Ciraci C, Mock J J, Hill R T, Wang Q, Wiley B J, Chilkoti A, Smith D R 2012 Nature 492 86

    [8]

    Garciavidal F J, Martinmoreno L, Ebbesen T W, Kuipers L 2010 Rev. Mod. Phys. 82 729

    [9]

    Mashooq K, Talukder M A 2016 J. Appl. Phys. 119 193101

    [10]

    Farah A E, Davidson R, Malasi A, Pooser R C, Lawrie B, Kalyanaraman R 2016 Appl. Phys. Lett. 108 043101

    [11]

    Bethe H A 1944 Phys. Rev. 66 163

    [12]

    Bouwkamp C J 1954 Rep. Proy. Phys. 17 35

    [13]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [14]

    Shao W J, Li W M, Xu X L, Wang H J, Wu Y Z, Yu J 2014 Chin. Phys. B 23 117301

    [15]

    Pang Y Q, Wang J F, Ma H, Feng M D, Xia S, Xu Z, Qu S B 2016 Appl. Phys. Lett. 108 194101

    [16]

    Martin-Moreno L, Garcia-Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B, Ebbesen T W 2001 Phys. Rev. Lett. 86 1114

    [17]

    Astilent S, Lalanne Ph, M Palamaru 2000 Opt. Commun. 175 265

    [18]

    Takakura Y 2001 Phys. Rev. Lett. 86 245601

    [19]

    Qi Y P, Nan X H, Bai Y L, Wang X X 2017 Acta Phys. Sin. 66 117102 (in Chinese) [祁云平, 南向红, 摆玉龙, 王向贤 2017 66 117102]

    [20]

    Wang C M, Huang H I, Chao C C, Chang J Y, Sheng Y 2007 Opt. Express 15 3496

    [21]

    Liu Y, Yu W 2012 IEEE Photon. Tech. Lett. 24 2214

    [22]

    Wu G, Chen J, Zhang R, Xiao J H, Gong Q H 2013 Opt. Lett. 38 3776

    [23]

    Lu Y Q, Cheng X Y, Xu M, Xu J, Wang J 2016 Acta Phys. Sin. 65 204207 (in Chinese) [陆云清, 成心怡, 许敏, 许吉, 王瑾 2016 65 204207]

    [24]

    Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V, Shelykh I A 2007 Phys. Rev. B 76 165415

    [25]

    Friedman P S, Wright D J 2014 Opt. Lett. 39 6895

    [26]

    Dong H Y, Wang J, Cui T J 2013 Phys. Rev. B 87 045406

    [27]

    Zhang Z Q, Lu H, Wang S H, Wei Z Y, Jiang H T, Li Y H 2015 Acta Phys. Sin. 64 114202 (in Chinese) [张振清, 陆海, 王少华, 魏泽勇, 江海涛, 李云辉 2015 64 114202]

    [28]

    Chen Y, Fan H Q, Lu B 2014 Acta Phys. Sin. 63 244207 (in Chinese) [陈颖, 范卉青, 卢波 2014 63 244207]

    [29]

    Kavokin A V, Shelykh I A, Malpuech G 2005 Phys. Rev. B 72 233102

    [30]

    Liu C S, Zeng Z 2010 Appl. Phys. Lett. 96 123101

  • [1]

    Ritchie R H 1957 Phys. Rev. 106 874

    [2]

    Parsons J, Hendry E, Burrows C P, Auguie B, Sambles J R, Barnes W L 2009 Phys. Rev. B 79 073412

    [3]

    Otto A 1968 Z. Phys. 216 398

    [4]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667

    [5]

    Lezec H J, Degiron A, Devaux E, Linke R A, Martinmoreno L, Garciavidal F J, Ebbesen T W 2002 Science 297 820

    [6]

    Genet C, Ebbesen T W 2014 Nature 445 39

    [7]

    Moreau A, Ciraci C, Mock J J, Hill R T, Wang Q, Wiley B J, Chilkoti A, Smith D R 2012 Nature 492 86

    [8]

    Garciavidal F J, Martinmoreno L, Ebbesen T W, Kuipers L 2010 Rev. Mod. Phys. 82 729

    [9]

    Mashooq K, Talukder M A 2016 J. Appl. Phys. 119 193101

    [10]

    Farah A E, Davidson R, Malasi A, Pooser R C, Lawrie B, Kalyanaraman R 2016 Appl. Phys. Lett. 108 043101

    [11]

    Bethe H A 1944 Phys. Rev. 66 163

    [12]

    Bouwkamp C J 1954 Rep. Proy. Phys. 17 35

    [13]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [14]

    Shao W J, Li W M, Xu X L, Wang H J, Wu Y Z, Yu J 2014 Chin. Phys. B 23 117301

    [15]

    Pang Y Q, Wang J F, Ma H, Feng M D, Xia S, Xu Z, Qu S B 2016 Appl. Phys. Lett. 108 194101

    [16]

    Martin-Moreno L, Garcia-Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B, Ebbesen T W 2001 Phys. Rev. Lett. 86 1114

    [17]

    Astilent S, Lalanne Ph, M Palamaru 2000 Opt. Commun. 175 265

    [18]

    Takakura Y 2001 Phys. Rev. Lett. 86 245601

    [19]

    Qi Y P, Nan X H, Bai Y L, Wang X X 2017 Acta Phys. Sin. 66 117102 (in Chinese) [祁云平, 南向红, 摆玉龙, 王向贤 2017 66 117102]

    [20]

    Wang C M, Huang H I, Chao C C, Chang J Y, Sheng Y 2007 Opt. Express 15 3496

    [21]

    Liu Y, Yu W 2012 IEEE Photon. Tech. Lett. 24 2214

    [22]

    Wu G, Chen J, Zhang R, Xiao J H, Gong Q H 2013 Opt. Lett. 38 3776

    [23]

    Lu Y Q, Cheng X Y, Xu M, Xu J, Wang J 2016 Acta Phys. Sin. 65 204207 (in Chinese) [陆云清, 成心怡, 许敏, 许吉, 王瑾 2016 65 204207]

    [24]

    Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V, Shelykh I A 2007 Phys. Rev. B 76 165415

    [25]

    Friedman P S, Wright D J 2014 Opt. Lett. 39 6895

    [26]

    Dong H Y, Wang J, Cui T J 2013 Phys. Rev. B 87 045406

    [27]

    Zhang Z Q, Lu H, Wang S H, Wei Z Y, Jiang H T, Li Y H 2015 Acta Phys. Sin. 64 114202 (in Chinese) [张振清, 陆海, 王少华, 魏泽勇, 江海涛, 李云辉 2015 64 114202]

    [28]

    Chen Y, Fan H Q, Lu B 2014 Acta Phys. Sin. 63 244207 (in Chinese) [陈颖, 范卉青, 卢波 2014 63 244207]

    [29]

    Kavokin A V, Shelykh I A, Malpuech G 2005 Phys. Rev. B 72 233102

    [30]

    Liu C S, Zeng Z 2010 Appl. Phys. Lett. 96 123101

  • [1] Guan Jian-Fei, Yu Xiao, Ding Guan-Tian, Chen Tao, Lu Yun-Qing. Transmission enhancement effect of distributed Bragg reflector structure covered with metal grating. Acta Physica Sinica, 2024, 73(11): 117301. doi: 10.7498/aps.73.20240357
    [2] Nong Jie, Zhang Yi-Yi, Wei Xue-Ling, Jiang Xin-Peng, Li Ning, Wang Dong-Ying, Xiao Si-Yang, Chen Hong-Ting, Zhang Zhen-Rong, Yang Jun-Bo. Research on realizing high permeability and laser stealth compatibility in visible light band with dielectric/metal/dielectric film system. Acta Physica Sinica, 2023, 72(17): 177802. doi: 10.7498/aps.72.20230855
    [3] Gu Xin, Zhang Hui-Fang, Li Ming-Yu, Chen Jun-Ya, He Ying. Theoretical analysis of tunable double plasmon induced transparency in three-ellipse-shaped resonator coupled waveguide. Acta Physica Sinica, 2022, 71(24): 247301. doi: 10.7498/aps.71.20221365
    [4] Chu Pei-Xin, Zhang Yu-Bin, Chen Jun-Xue. Surface plasmon induced transparency in coupled microcavities assisted by slits. Acta Physica Sinica, 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [5] Guan Fu-Xin, Dong Shao-Hua, He Qiong, Xiao Shi-Yi, Sun Shu-Lin, Zhou Lei. Scatterings and wavefront manipulations of surface plasmon polaritons. Acta Physica Sinica, 2020, 69(15): 157804. doi: 10.7498/aps.69.20200614
    [6] Wang Shuai, Deng Zi-Lan, Wang Fa-Qiang, Wang Xiao-Lei, Li Xiang-Ping. Role of optical angular momentum in enhanced transmission process of plasmonic coaxial nanoring aperture. Acta Physica Sinica, 2019, 68(7): 077801. doi: 10.7498/aps.68.20182017
    [7] Qi Yun-Ping, Zhang Xue-Wei, Zhou Pei-Yang, Hu Bing-Bing, Wang Xiang-Xian. Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator embedded by cross structure. Acta Physica Sinica, 2018, 67(19): 197301. doi: 10.7498/aps.67.20180758
    [8] Wang Wei, Gao She-Sheng, Meng Yang. Transmission characteristics of surface plasmon polaritons in -shaped resonator. Acta Physica Sinica, 2017, 66(1): 017301. doi: 10.7498/aps.66.017301
    [9] Lu Yun-Qing, Cheng Xin-Yi, Xu Min, Xu Ji, Wang Jin. Extraordinary transmission of light enhanced by exciting hybrid states of Tamm and surface plasmon polaritions in a single nano-slit. Acta Physica Sinica, 2016, 65(20): 204207. doi: 10.7498/aps.65.204207
    [10] Zhang Yong-Yuan, Luo Li-Na, Zhang Zhong-Yue. Surface plasmon polaritons splitting properties of silver cross nanowires. Acta Physica Sinica, 2015, 64(9): 097303. doi: 10.7498/aps.64.097303
    [11] Zhang Xing-Fang, Yan Xin. Tunable properties of localized surface plasmon resonance wavelength of gold nanoshell. Acta Physica Sinica, 2013, 62(3): 037805. doi: 10.7498/aps.62.037805
    [12] Luo Song, Fu Tong, Zhang Zhong-Yue. Fano resonance in sliver circular gap embedded with a sliver nanorod. Acta Physica Sinica, 2013, 62(14): 147303. doi: 10.7498/aps.62.147303
    [13] Qin Yan, Cao Wei, Zhang Zhong-Yue. Enhanced optical transmission through metallic slits embedded with rectangular cavities. Acta Physica Sinica, 2013, 62(12): 127302. doi: 10.7498/aps.62.127302
    [14] Zou Wei-Bo, Zhou Jun, Jin Li, Zhang Hao-Peng. Properties of localized surface plasmon resonance of gold nanoshell pairs. Acta Physica Sinica, 2012, 61(9): 097805. doi: 10.7498/aps.61.097805
    [15] Cong Chao, Wu Da-Jian, Liu Xiao-Jun, Li Bo. Study on the localized surface plasmon resonance properties of bimetallic gold and silver three-layered nanotubes. Acta Physica Sinica, 2012, 61(3): 037301. doi: 10.7498/aps.61.037301
    [16] Chen Yuan-Yuan, Zou Ren-Hua, Song Gang, Zhang Kai, Yu Li, Zhao Yu-Fang, Xiao Jing-Hua. The polarization characteristics of the excitation and emission of surface plasmon polarization in the Ag nanowires. Acta Physica Sinica, 2012, 61(24): 247301. doi: 10.7498/aps.61.247301
    [17] Zhang Zhi-Dong, Zhao Ya-Nan, Lu Dong, Xiong Zu-Hong, Zhang Zhong-Yue. Numerical investigation of the metal-insulator-metal waveguide filter based on the arc-shaped resonator. Acta Physica Sinica, 2012, 61(18): 187301. doi: 10.7498/aps.61.187301
    [18] Zeng Zhi-Wen, Liu Hai-Tao, Zhang Si-Wen. Design of extraordinary-optical-transimission refractive-index sensor of subwavelength metallic slit array based on a Fabry-Perot model. Acta Physica Sinica, 2012, 61(20): 200701. doi: 10.7498/aps.61.200701
    [19] Cong Chao, Wu Da-Jian, Liu Xiao-Jun. Localized surface plasmon resonance propertiesof elliptical gold nanotubes. Acta Physica Sinica, 2011, 60(4): 046102. doi: 10.7498/aps.60.046102
    [20] Miao Jiang-Ping, Wu Zong-Han, Sun Cheng-Xiu, Sun Yue-Ming. The self-consistent theoretical study of the effect of surface plasmon and polariton on electronic transport. Acta Physica Sinica, 2004, 53(8): 2728-2733. doi: 10.7498/aps.53.2728
Metrics
  • Abstract views:  6908
  • PDF Downloads:  309
  • Cited By: 0
Publishing process
  • Received Date:  16 January 2018
  • Accepted Date:  06 March 2018
  • Published Online:  20 May 2019

/

返回文章
返回
Baidu
map