-
In recent years, a metallic single slit nanostructure or slit array structure, due to simple structure and easy-to integration, has been used to construct a light source in the nanostructures based on the surface plasmon polaritons (SPPs). However, the problem of low transmission through an isolated subwavelength single slit nanostructure is still existent. The main reason is that the excitation efficiency of SPPs in the single slit nanostructure is not too high. Therefore, how to effectively enhance the optical transmission has become a research focus. In order to further improve the transmittance of the metallic single slit nanostructure, in this paper, we improve the single slit nanostructure imbedded in the metal silver thin film on a distributed Bragg reflector (DBR) proposed in previous literature. As a result, a novel method of designing a single slit on a DBR is proposed to effectively enhance the optical transmission in a single slit by improving the excitation efficiency of SPPs. Our proposed novel structure is made up of a subwavelength single nano-slit surrounded symmetrically by a pair of grooves on both sides of metal silver film on a distributed Bragg reflector. When the TM polarized light is illuminated from the DBR side of our proposed structure to the DBR-silver slit-grooves nanostructure, the Tamm plasmon polaritons (TPPs) at the interface between the silver film and the DBR and the SPPs in the slit on the entrance side of the silver film are excited at the DBR-silver film interface, and the SPPs in the slit and grooves pair on the exit side of the silver film are excited simultaneously. In our proposed structure, coupling between the TPPs and the SPPs leads to the hybrid state of Tamm and surface plasmon polaritons in the slit and grooves. Finally, taking advantage of constructive interference between SPPs excited by the grooves and exciting hybrid states of TPPs-SPPs in the slit, due to the local field enhancement effect of the TPPs mode and the coupling effect of constructive interference between the pair grooves and the nano-slit, the excitation efficiency of the SPPs can be increased significantly. Furthermore, the quasi Fabry-Pérot resonance effect in the nano-slit is taken into consideration, and the transmittance of our proposed structure is enhanced greatly. In the present paper, the finite element method is used to study the transmission properties of the single nano-slit embedded with paired grooves on the DBR-sliver nanostructure. After a series of parameters are optimized, the maximum transmittance through the single slit in DBR-silver slit-groove nanostructure can increase to 0.22, and this transmittance is expected to be about 22 times the transmittance (0.01) of the light through a single slit in a silver film on the TiO2 substrate (without DBR and grooves), which is higher than the maximum light transsmission 0.166 given in Ref.[23]. The research results of this study have a certain application value in the fields of nano-light source design, photonic integrated circuits and optical signal transmission and so on.
-
Keywords:
- optical anomaly transmission /
- Tamm plasmon polaritons /
- surface plasmon polaritons /
- quasi Fabry-Pérot resonance
[1] Ritchie R H 1957 Phys. Rev. 106 874
[2] Parsons J, Hendry E, Burrows C P, Auguie B, Sambles J R, Barnes W L 2009 Phys. Rev. B 79 073412
[3] Otto A 1968 Z. Phys. 216 398
[4] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667
[5] Lezec H J, Degiron A, Devaux E, Linke R A, Martinmoreno L, Garciavidal F J, Ebbesen T W 2002 Science 297 820
[6] Genet C, Ebbesen T W 2014 Nature 445 39
[7] Moreau A, Ciraci C, Mock J J, Hill R T, Wang Q, Wiley B J, Chilkoti A, Smith D R 2012 Nature 492 86
[8] Garciavidal F J, Martinmoreno L, Ebbesen T W, Kuipers L 2010 Rev. Mod. Phys. 82 729
[9] Mashooq K, Talukder M A 2016 J. Appl. Phys. 119 193101
[10] Farah A E, Davidson R, Malasi A, Pooser R C, Lawrie B, Kalyanaraman R 2016 Appl. Phys. Lett. 108 043101
[11] Bethe H A 1944 Phys. Rev. 66 163
[12] Bouwkamp C J 1954 Rep. Proy. Phys. 17 35
[13] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824
[14] Shao W J, Li W M, Xu X L, Wang H J, Wu Y Z, Yu J 2014 Chin. Phys. B 23 117301
[15] Pang Y Q, Wang J F, Ma H, Feng M D, Xia S, Xu Z, Qu S B 2016 Appl. Phys. Lett. 108 194101
[16] Martin-Moreno L, Garcia-Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B, Ebbesen T W 2001 Phys. Rev. Lett. 86 1114
[17] Astilent S, Lalanne Ph, M Palamaru 2000 Opt. Commun. 175 265
[18] Takakura Y 2001 Phys. Rev. Lett. 86 245601
[19] Qi Y P, Nan X H, Bai Y L, Wang X X 2017 Acta Phys. Sin. 66 117102 (in Chinese) [祁云平, 南向红, 摆玉龙, 王向贤 2017 66 117102]
[20] Wang C M, Huang H I, Chao C C, Chang J Y, Sheng Y 2007 Opt. Express 15 3496
[21] Liu Y, Yu W 2012 IEEE Photon. Tech. Lett. 24 2214
[22] Wu G, Chen J, Zhang R, Xiao J H, Gong Q H 2013 Opt. Lett. 38 3776
[23] Lu Y Q, Cheng X Y, Xu M, Xu J, Wang J 2016 Acta Phys. Sin. 65 204207 (in Chinese) [陆云清, 成心怡, 许敏, 许吉, 王瑾 2016 65 204207]
[24] Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V, Shelykh I A 2007 Phys. Rev. B 76 165415
[25] Friedman P S, Wright D J 2014 Opt. Lett. 39 6895
[26] Dong H Y, Wang J, Cui T J 2013 Phys. Rev. B 87 045406
[27] Zhang Z Q, Lu H, Wang S H, Wei Z Y, Jiang H T, Li Y H 2015 Acta Phys. Sin. 64 114202 (in Chinese) [张振清, 陆海, 王少华, 魏泽勇, 江海涛, 李云辉 2015 64 114202]
[28] Chen Y, Fan H Q, Lu B 2014 Acta Phys. Sin. 63 244207 (in Chinese) [陈颖, 范卉青, 卢波 2014 63 244207]
[29] Kavokin A V, Shelykh I A, Malpuech G 2005 Phys. Rev. B 72 233102
[30] Liu C S, Zeng Z 2010 Appl. Phys. Lett. 96 123101
-
[1] Ritchie R H 1957 Phys. Rev. 106 874
[2] Parsons J, Hendry E, Burrows C P, Auguie B, Sambles J R, Barnes W L 2009 Phys. Rev. B 79 073412
[3] Otto A 1968 Z. Phys. 216 398
[4] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667
[5] Lezec H J, Degiron A, Devaux E, Linke R A, Martinmoreno L, Garciavidal F J, Ebbesen T W 2002 Science 297 820
[6] Genet C, Ebbesen T W 2014 Nature 445 39
[7] Moreau A, Ciraci C, Mock J J, Hill R T, Wang Q, Wiley B J, Chilkoti A, Smith D R 2012 Nature 492 86
[8] Garciavidal F J, Martinmoreno L, Ebbesen T W, Kuipers L 2010 Rev. Mod. Phys. 82 729
[9] Mashooq K, Talukder M A 2016 J. Appl. Phys. 119 193101
[10] Farah A E, Davidson R, Malasi A, Pooser R C, Lawrie B, Kalyanaraman R 2016 Appl. Phys. Lett. 108 043101
[11] Bethe H A 1944 Phys. Rev. 66 163
[12] Bouwkamp C J 1954 Rep. Proy. Phys. 17 35
[13] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824
[14] Shao W J, Li W M, Xu X L, Wang H J, Wu Y Z, Yu J 2014 Chin. Phys. B 23 117301
[15] Pang Y Q, Wang J F, Ma H, Feng M D, Xia S, Xu Z, Qu S B 2016 Appl. Phys. Lett. 108 194101
[16] Martin-Moreno L, Garcia-Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B, Ebbesen T W 2001 Phys. Rev. Lett. 86 1114
[17] Astilent S, Lalanne Ph, M Palamaru 2000 Opt. Commun. 175 265
[18] Takakura Y 2001 Phys. Rev. Lett. 86 245601
[19] Qi Y P, Nan X H, Bai Y L, Wang X X 2017 Acta Phys. Sin. 66 117102 (in Chinese) [祁云平, 南向红, 摆玉龙, 王向贤 2017 66 117102]
[20] Wang C M, Huang H I, Chao C C, Chang J Y, Sheng Y 2007 Opt. Express 15 3496
[21] Liu Y, Yu W 2012 IEEE Photon. Tech. Lett. 24 2214
[22] Wu G, Chen J, Zhang R, Xiao J H, Gong Q H 2013 Opt. Lett. 38 3776
[23] Lu Y Q, Cheng X Y, Xu M, Xu J, Wang J 2016 Acta Phys. Sin. 65 204207 (in Chinese) [陆云清, 成心怡, 许敏, 许吉, 王瑾 2016 65 204207]
[24] Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V, Shelykh I A 2007 Phys. Rev. B 76 165415
[25] Friedman P S, Wright D J 2014 Opt. Lett. 39 6895
[26] Dong H Y, Wang J, Cui T J 2013 Phys. Rev. B 87 045406
[27] Zhang Z Q, Lu H, Wang S H, Wei Z Y, Jiang H T, Li Y H 2015 Acta Phys. Sin. 64 114202 (in Chinese) [张振清, 陆海, 王少华, 魏泽勇, 江海涛, 李云辉 2015 64 114202]
[28] Chen Y, Fan H Q, Lu B 2014 Acta Phys. Sin. 63 244207 (in Chinese) [陈颖, 范卉青, 卢波 2014 63 244207]
[29] Kavokin A V, Shelykh I A, Malpuech G 2005 Phys. Rev. B 72 233102
[30] Liu C S, Zeng Z 2010 Appl. Phys. Lett. 96 123101
Catalog
Metrics
- Abstract views: 6908
- PDF Downloads: 309
- Cited By: 0