搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单个等离激元纳米颗粒和纳米间隙结构与量子发光体的强耦合

闫晓宏 牛亦杰 徐红星 魏红

引用本文:
Citation:

单个等离激元纳米颗粒和纳米间隙结构与量子发光体的强耦合

闫晓宏, 牛亦杰, 徐红星, 魏红

Strong coupling of single plasmonic nanoparticles and nanogaps with quantum emitters

Yan Xiao-Hong, Niu Yi-Jie, Xu Hong-Xing, Wei Hong
PDF
HTML
导出引用
  • 在腔量子电动力学中, 如果量子发光体与腔模式的耦合强度超过二者的平均损耗, 就进入了强耦合区域, 此时会形成部分光部分物质的新量子态—极化激元态. 强耦合在室温玻色-爱因斯坦凝聚、极化激元激光、单光子非线性、量子信息等领域有重要的应用价值. 基于单个金属纳米颗粒的结构可以支持局域表面等离激元共振, 拥有极小的模式体积, 非常有利于强耦合现象的发生. 本文主要介绍了强耦合的理论背景、单个金属纳米颗粒和纳米间隙结构与量子发光体的强耦合、以及强耦合的动态调控, 并展望了该领域的研究前景.
    In cavity quantum electrodynamics, when the interaction between quantum emitter and cavity mode is strong enough to overcome the mean decay rate of the system, it will enter into a strong coupling regime, thereby forming part-light part-matter polariton states. Strong coupling can serve as a promising platform for room temperature Bose-Einstein condensation, polariton lasing, single photon nonlinearity, quantum information, etc. Localized surface plasmons supported by single metal nanostructures possess extremely small mode volume, which is favorable for realizing strong coupling. Moreover, the nanoscale dimensions of plasmonic structures can facilitate the miniaturization of strong coupling systems. Here, the research progress of strong plasmon-exciton coupling between single metal nanoparticles/nanogaps and quantum emitters is reviewed. The theory background of strong coupling is first introduced, including quantum treatment, classical coupled oscillator model, as well as the analytical expressions for scattering and photoluminescence spectra. Then, strong coupling between different kinds of plasmonic nanostructures and quantum emitters is reviewed. Single metal nanoparticles, nanoparticle dimers, and nanoparticle-on-mirror structures constitute the most typical plasmonic nanostructures. The nanogaps in the latter two systems can highly concentrate electromagnetic field, providing optical nanocavities with smaller mode volume than single nanoparticles. Therefore, the larger coupling strength can be achieved in the nanogap systems, which is conducive to strong coupling at the single-exciton level. In addition, the active tuning of strong coupling based separately on thermal, electrical and optical means are reviewed. The energy and oscillator strength of the excitons in transition metal dichalcogenide (TMDC) monolayers are dependent on temperature. Therefore, the strong coupling can be tuned by heating or cooling the system. The excitons in TMDC monolayers can also be tuned by electrical gating, enabling electrical control of strong coupling. Optically tuning the quantum emitters provides another way to actively control the strong coupling. Overall, the research on active tuning of strong plasmon-exciton coupling is still very limited, and more investigations are needed. Finally, this review is concluded with a short summary and the prospect of this field.
      通信作者: 魏红, weihong@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11774413, 12074421, 91850207)和中国科学院战略性先导科技专项(B类)(批准号: XDB33000000)资助的课题
      Corresponding author: Wei Hong, weihong@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774413, 12074421, 91850207) and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33000000).
    [1]

    Plumhof J D, Stöferle T, Mai L, Scherf U, Mahrt R F 2014 Nat. Mater. 13 247Google Scholar

    [2]

    Lerario G, Fieramosca A, Barachati F, et al. 2017 Nat. Phys. 13 837Google Scholar

    [3]

    Rodriguez S R K, Feist J, Verschuuren M A, Garcia Vidal F J, Gómez Rivas J 2013 Phys. Rev. Lett. 111 166802Google Scholar

    [4]

    Kéna-Cohen S, Forrest S R 2010 Nat. Photonics 4 371Google Scholar

    [5]

    Ramezani M, Halpin A, Fernández-Domínguez A I, Feist J, Rodriguez S R K, Garcia-Vidal F J, Gómez Rivas J 2017 Optica 4 31Google Scholar

    [6]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87Google Scholar

    [7]

    Zasedatelev A V, Baranikov A V, Sannikov D, et al. 2021 Nature 597 493Google Scholar

    [8]

    Sillanpää M A, Park J I, Simmonds R W 2007 Nature 449 438Google Scholar

    [9]

    Wei H, Yan X H, Niu Y J, Li Q, Jia Z L, Xu H X 2021 Adv. Funct. Mater. 31 2100889Google Scholar

    [10]

    Rudin S, Reinecke T L 1999 Phys. Rev. B 59 10227Google Scholar

    [11]

    Wu X H, Gray S K, Pelton M 2010 Opt. Express 18 23633Google Scholar

    [12]

    Cui G Q, Raymer M G 2006 Phys. Rev. A 73 053807Google Scholar

    [13]

    Leng H X, Szychowski B, Daniel M C, Pelton M 2018 Nat. Commun. 9 4012Google Scholar

    [14]

    Lo T W, Zhang Q, Qiu M, Guo X Y, Meng Y J, Zhu Y, Xiao J J, Jin W, Leung C W, Lei D Y 2019 ACS Photonics 6 411Google Scholar

    [15]

    Li N, Han Z H, Huang Y M, Liang K, Wang X F, Wu F, Qi X Y, Shang Y X, Yu L, Ding B Q 2020 J. Mater. Chem. C 8 7672Google Scholar

    [16]

    Li L, Wang L, Du C L, Guan Z Y, Xiang Y X, Wu W, Ren M X, Zhang X Z, Tang A W, Cai W, Xu J J 2020 Nanoscale 12 3112Google Scholar

    [17]

    Groß H, Hamm J M, Tufarelli T, Hess O, Hecht B 2018 Sci. Adv. 4 eaar4906Google Scholar

    [18]

    Zengin G, Johansson G, Johansson P, Antosiewicz T J, Käll M, Shegai T 2013 Sci. Rep. 3 3074Google Scholar

    [19]

    Zheng D, Zhang S P, Deng Q, Kang M, Nordlander P, Xu H X 2017 Nano Lett. 17 3809Google Scholar

    [20]

    Wen J X, Wang H, Wang W L, Deng Z X, Zhuang C, Zhang Y, Liu F, She J C, Chen J, Chen H J, Deng S Z, Xu N S 2017 Nano Lett. 17 4689Google Scholar

    [21]

    Wen J X, Wang H, Chen H J, Deng S Z, Xu N S 2018 Chin. Phys. B 27 096101Google Scholar

    [22]

    Jiang Y Z, Wang H, Wen S Y, Chen H J, Deng S Z 2020 ACS Nano 14 13841Google Scholar

    [23]

    Liu R M, Zhou Z K, Yu Y C, Zhang T W, Wang H, Liu G H, Wei Y M, Chen H J, Wang X H 2017 Phys. Rev. Lett. 118 237401Google Scholar

    [24]

    Munkhbat B, Baranov D G, Bisht A, Hoque M A, Karpiak B, Dash S P, Shegai T 2020 ACS Nano 14 1196Google Scholar

    [25]

    Kato F, Minamimoto H, Nagasawa F, Yamamoto Y S, Itoh T, Murakoshi K 2018 ACS Photonics 5 788Google Scholar

    [26]

    Zengin G, Wersäll M, Nilsson S, Antosiewicz T J, Käll M, Shegai T 2015 Phys. Rev. Lett. 114 157401Google Scholar

    [27]

    DeLacy B G, Miller O D, Hsu C W, Zander Z, Lacey S, Yagloski R, Fountain A W, Valdes E, Anquillare E, Soljačić M, Johnson S G, Joannopoulos J D 2015 Nano Lett. 15 2588Google Scholar

    [28]

    Munkhbat B, Wersäll M, Baranov D G, Antosiewicz T J, Shegai T 2018 Sci. Adv. 4 eaas9552Google Scholar

    [29]

    Wang M S, Krasnok A, Zhang T Y, Scarabelli L, Liu H, Wu Z L, Liz-Marzán L M, Terrones M, Alù A, Zheng Y B 2018 Adv. Mater. 30 1705779Google Scholar

    [30]

    Wersäll M, Cuadra J, Antosiewicz T J, Balci S, Shegai T 2017 Nano Lett. 17 551Google Scholar

    [31]

    Wersäll M, Munkhbat B, Baranov D G, Herrera F, Cao J, Antosiewicz T J, Shegai T 2019 ACS Photonics 6 2570Google Scholar

    [32]

    Yankovich A B, Munkhbat B, Baranov D G, et al. 2019 Nano Lett. 19 8171Google Scholar

    [33]

    Cuadra J, Baranov D G, Wersäll M, Verre R, Antosiewicz T J, Shegai T 2018 Nano Lett. 18 1777Google Scholar

    [34]

    Jiang P, Song G, Wang Y L, Li C, Wang L L, Yu L 2019 Opt. Express 27 16613Google Scholar

    [35]

    Stührenberg M, Munkhbat B, Baranov D G, Cuadra J, Yankovich A B, Antosiewicz T J, Olsson E, Shegai T 2018 Nano Lett. 18 5938Google Scholar

    [36]

    Lawless J, Hrelescu C, Elliott C, Peters L, McEvoy N, Bradley A L 2020 ACS Appl. Mater. Interfaces 12 46406Google Scholar

    [37]

    Geisler M, Cui X, Wang J, et al. 2019 ACS Photonics 6 994Google Scholar

    [38]

    Xu H X, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357Google Scholar

    [39]

    Xu H X, Aizpurua J, Käll M, Apell P 2000 Phys. Rev. E 62 4318Google Scholar

    [40]

    Schlather A E, Large N, Urban A S, Nordlander P, Halas N J 2013 Nano Lett. 13 3281Google Scholar

    [41]

    Roller E M, Argyropoulos C, Högele A, Liedl T, Pilo-Pais M 2016 Nano Lett. 16 5962Google Scholar

    [42]

    Luo Y, Wang Y C, Liu M Q, Zhu H, Chen O, Zou S L, Zhao J 2020 J. Phys. Chem. Lett. 11 2449Google Scholar

    [43]

    Heintz J, Markešević N, Gayet E Y, Bonod N, Bidault S 2021 ACS Nano 15 14732Google Scholar

    [44]

    Santhosh K, Bitton O, Chuntonov L, Haran G 2016 Nat. Commun. 7 11823Google Scholar

    [45]

    Gupta S N, Bitton O, Neuman T, Esteban R, Chuntonov L, Aizpurua J, Haran G 2021 Nat. Commun. 12 1310Google Scholar

    [46]

    Yan X H, Wei H 2020 Nanoscale 12 9708Google Scholar

    [47]

    Bitton O, Gupta S N, Houben L, Kvapil M, Křápek V, Šikola T, Haran G 2020 Nat. Commun. 11 487Google Scholar

    [48]

    Li G C, Zhang Q, Maier S A, Lei D Y 2018 Nanophotonics 7 1865Google Scholar

    [49]

    Chikkaraddy R, de Nijs B, Benz F, Barrow S J, Scherman O A, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg J J 2016 Nature 535 127Google Scholar

    [50]

    Ojambati O S, Chikkaraddy R, Deacon W D, Horton M, Kos D, Turek V A, Keyser U F, Baumberg J J 2019 Nat. Commun. 10 1049Google Scholar

    [51]

    Katzen J M, Tserkezis C, Cai Q, Li L H, Kim J M, Lee G, Yi G-R, Hendren W R, Santos E J G, Bowman R M, Huang F 2020 ACS Appl. Mater. Interfaces 12 19866Google Scholar

    [52]

    Kleemann M E, Chikkaraddy R, Alexeev E M, et al. 2017 Nat. Commun. 8 1296Google Scholar

    [53]

    Liu X Z, Yi J, Yang S, Lin E C, Zhang Y J, Zhang P Y, Li J F, Wang Y, Lee Y H, Tian Z Q, Zhang X 2021 Nat. Mater. 20 1210Google Scholar

    [54]

    Deng F, Liu H F, Xu L, Lan S, Miroshnichenko A E 2020 Laser Photonics Rev. 14 1900420Google Scholar

    [55]

    Chen X X, Chen Y H, Qin J, Zhao D, Ding B Y, Blaikie R J, Qiu M 2017 Nano Lett. 17 3246Google Scholar

    [56]

    Han X, Wang K, Xing X, Wang M, Lu P 2018 ACS Photonics 5 3970Google Scholar

    [57]

    Huang J, Traverso A J, Yang G, Mikkelsen M H 2019 ACS Photonics 6 838Google Scholar

    [58]

    Hou S, Tobing L Y M, Wang X, Xie Z, Yu J, Zhou J, Zhang D, Dang C, Coquet P, Tay B K, Birowosuto M D, Teo E H T, Wang H 2019 Adv. Opt. Mater. 7 1900857Google Scholar

    [59]

    Sun J W, Hu H T, Zheng D, Zhang D X, Deng Q, Zhang S P, Xu H X 2018 ACS Nano 12 10393Google Scholar

    [60]

    Qin J, Chen Y H, Zhang Z, Zhang Y, Blaikie R J, Ding B, Qiu M 2020 Phys. Rev. Lett. 124 063902Google Scholar

    [61]

    Park K D, May M A, Leng H X, Wang J R, Kropp J A, Gougousi T, Pelton M, Raschke M B 2019 Sci. Adv. 5 eaav5931Google Scholar

  • 图 1  单个金属纳米颗粒与量子发光体的强耦合 (a), (b)单个纳米棒与量子发光体的强耦合, (a)左上图为单个银纳米棒在单层WSe2上的示意图, 插图展示了银纳米棒上第3阶等离激元模式电场分布的计算结果, 右图为银纳米棒-WSe2耦合体系随氧化铝薄膜厚度增加的暗场散射光谱, 左下图为极化激元的色散曲线, 实线表示拟合结果[19]; (b) 上图为金纳米棒和Au@Ag长方体纳米棒的透射电子显微镜(transmission electron microscopy, TEM)图像、示意图以及纵向等离激元模式电场分布的计算结果, 下图为Au@Ag长方体纳米棒与J-聚体耦合体系拉比劈裂的测量值及平均激子数目的计算值随分子浓度的变化关系[23]; (c)—(e) 单个纳米片与量子发光体的强耦合, (c) 银纳米片(青色)以及银纳米片与J-聚体耦合体系(蓝色)的暗场散射光谱[30]; (d)银纳米片与J-聚体耦合体系的暗场散射光谱和荧光光谱(分别通过532和568 nm的激光激发)的峰位[31]; (e) 银纳米片-六层WS2耦合体系的暗场散射光谱及对应的EELS谱[32]; (f) 单个纳米双锥体与量子发光体的强耦合, 上图为金纳米双锥体在单层WSe2上的能量密度分布, 插图为尖端附近的放大图, 下图为拉比劈裂值和耦合强度随WSe2层数的变化关系[35]; (g) 5个不同金纳米盘-单层WS2耦合体系的散射光谱和反射光谱[37]

    Fig. 1.  Strong coupling of single metal nanoparticles and quantum emitters: (a), (b) Single nanorods strongly coupled with quantum emitters. (a) Left-top panel shows the schematic of a single Ag nanorod on monolayer WSe2. The inset indicates the calculated electric field distribution of the 3rd order plasmon mode of a Ag nanorod. Right panel shows a set of scattering spectra of Ag nanorod-WSe2 coupled system with increasing alumina thickness. Left-bottom panel shows the dispersion of plexcitons. The solid lines are the fitting results[19]. (b) Top panel shows transmission electron microscopy (TEM) images, schematics and calculated electric field distributions of Au nanorod and Au@Ag cuboid, respectively. Bottom panel shows the statistics of the Rabi splitting measured for individual coupled systems and the corresponding calculated mean exciton numbers for each dye concentration[23]. (c)–(e) Single nanoprisms strongly coupled with quantum emitters. (c) Dark-field scattering spectra of a Ag nanoprism (cyan) and a coupled system of Ag nanoprism and J-aggregates (blue)[30]. (d) Correlations between the peaks of dark-field scattering spectra and photoluminescence spectra of the coupled system of Ag nanoprism and J-aggregates [31]. (e) Correlated dark-field scattering spectrum and EELS spectrum for the coupled system of Ag nanoprism and six-layer WS2[32]. (f) Single bipyramids strongly coupled with quantum emitters. Top panel shows the energy density cross-section of a Au bipyramid on top of WSe2 monolayer. The inset shows the enlarged view around the tip. Bottom panel shows the Rabi splitting and coupling strength as a function of the number of WSe2 layers[35]. (g) Experimental scattering and reflection spectra for five different individual Au nanodisk-monolayer WS2 coupled systems[37].

    图 2  单个等离激元二聚体与量子发光体的强耦合 (a) 左图为金纳米盘二聚体和J-聚体耦合体系的散射光谱及对应尺寸的金纳米盘二聚体的扫描电子显微镜(scanning electron microscopy, SEM)图, 比例尺是100 nm, 右图为该耦合体系中极化激元的色散曲线[40]; (b) 金纳米颗粒二聚体(黑色)及其与J-聚体耦合体系(蓝色)的散射光谱及相应的SEM和暗场显微图, 比例尺是100 nm[41]; (c) 间隙中分别有1, 2和3个量子点的银纳米蝴蝶结结构的散射光谱及相应的SEM图, 比例尺是20 nm[44]; (d) 左图为金纳米蝴蝶结(蓝色)及覆盖有单层WSe2的同一纳米蝴蝶结结构(红色)的暗场散射光谱和相应的SEM图, 右图为耦合强度g的实验值、模拟值和$1/\sqrt V $的模拟值随失谐量的变化关系[46]

    Fig. 2.  Strong coupling of single plasmonic dimers and quantum emitters: (a) Left panel shows the scattering spectra of Au nanodisk dimers coupled with J-aggregates and the corresponding scanning electron microscopy (SEM) images of bare Au nanodisk dimers with the same sizes. The scale bars are 100 nm. Right panel shows the dispersion of plexcitons for this system[40]. (b) Scattering spectra of nanoparticle dimers with (blue) and without (black) J-aggregates, as well as the corresponding SEM and dark-field microscopy images[41]. The scale bars are 100 nm. (c) Scattering spectra of Ag nanobowties with one, two and three quantum dots in the gap and the corresponding SEM images. The scale bars are 20 nm[44]. (d) Left panel shows the scattering spectra of bare Au nanobowties (blue) and the same nanobowties coated with WSe2 monolayers (red), as well as the corresponding SEM images of the hybrid systems. Right panel shows the experimental and simulated coupling strength g and simulated $1/\sqrt V $ as a function of detuning [46].

    图 3  单个NPoM结构与量子发光体的强耦合 (a) 单个CdSe/CdS量子点位于准球状金纳米颗粒和银膜间隙中的耦合体系的制备过程示意图(上)及其暗场散射光谱和荧光光谱(下)[13]; (b) 金纳米立方体和金膜的间隙中放入J-聚体的示意图(上)及散射光谱(下), 插图分别表示通过650 nm 短通(绿色)和长通(红色)滤波片的远场散射图像[55]; (c) 单层WS2、金纳米片放置在金膜上的结构及单层WS2与NPoM耦合体系对应的光谱、结构示意图以及光学或者SEM图像[60]; (d) 左图为金针尖-量子点的横向距离从30 nm缩减到0所对应的荧光光谱, 右图为由不同量子点的荧光光谱获得的极化激元能量相对失谐量的变化关系[61]

    Fig. 3.  Strong coupling of single NPoM structures and quantum emitters: (a) Sketch of the assembly process for the coupled system of a single CdSe/CdS quantum dot located in the nanogap between a quasi-spherical Au nanoparticle and Ag film (top) as well as the scattering and photoluminescence spectra of the coupled system (bottom)[13]. (b) Schematic (top) and scattering spectrum (bottom) of a Au nanocube on Au film with J-aggregates in the gap. The insets show the far-field scattering images collected through short-pass (green) and long-pass (red) filers, respectively[55]. (c) Spectra, schematics and optical or SEM images of monolayer WS2 on Au film, NPoM structure composed of a Au nanoprism and Au film, and monolayer WS2-NPoM coupled system, respectively[60]. (d) Left panel shows the photoluminescence spectra as the lateral distances between the Au tip and quantum dot are varied from 30 to 0 nm. Right panel shows the plexciton energies as a function of detuning extracted from the photoluminescence spectra of different quantum dots[61].

    图 4  强耦合体系的热调控 (a) 单个金纳米棒与单层WS2强耦合体系的示意图(左上)、不同温度下的暗场散射光谱(右)和耦合体系散射光谱峰位相对失谐量的关系图(左下)[20]; (b) 单个Au@Ag纳米长方体置于单层过渡金属硫属化合物之上的示意图(左), 单个Au@Ag纳米长方体与单层WS2的耦合强度(中)及单层WS2的振子强度(右)随温度的变化[14]; (c) 单个银纳米片与单层WS2强耦合体系的示意图(上)及不同温度下的暗场散射光谱(下)[33]

    Fig. 4.  Active tuning of strongly coupled systems by heat: (a) Sketch (left-top), temperature dependent scattering spectra (right) and the extracted peak energies of the scattering spectra as a function of detuning (left-bottom) for a Au nanorod strongly coupled with monolayer WS2[20]. (b) Sketch of a Au@Ag nanocuboid on top of monolayer transition metal dichalcogenides (left), temperature dependent coupling strength between a Au@Ag nanocuboid and monolayer WS2 (middle) and temperature dependent oscillator strength for monolayer WS2 (right) [14]. (c) Sketch (top) and temperature dependent scattering spectra (bottom) for a Ag nanoprism strongly coupled with monolayer WS2[33].

    图 5  强耦合体系的电调控和光调控 (a) 背栅压调控单个银纳米片与单层WS2强耦合的示意图(左), 该体系在77 K温度下激子的振子强度(中)及表面等离激元-激子耦合强度(右)随背栅压的变化[24]; (b) 利用光漂白作用调控单个银纳米片与J-聚体强耦合的示意图(左), 该体系在不同光照时间下的散射光谱(中)及活性分子相对浓度随光照时间的变化(右)[28]

    Fig. 5.  Active tuning of strongly coupled systems by electrical and optical means: (a) Sketch of a single Ag nanoprism strongly coupled with monolayer WS2 under back gating (left), and exciton oscillator strength (middle) and plasmon-exciton coupling strength (right) of the system under different gate voltages at 77 K[24]. (b) Sketch of strongly coupled Ag nanoprism and J-aggregates (left), scattering spectra of the coupled system for different irradiation time (middle) and relative change in the concentration of active molecules as a function of irradiation time (right)[28].

    Baidu
  • [1]

    Plumhof J D, Stöferle T, Mai L, Scherf U, Mahrt R F 2014 Nat. Mater. 13 247Google Scholar

    [2]

    Lerario G, Fieramosca A, Barachati F, et al. 2017 Nat. Phys. 13 837Google Scholar

    [3]

    Rodriguez S R K, Feist J, Verschuuren M A, Garcia Vidal F J, Gómez Rivas J 2013 Phys. Rev. Lett. 111 166802Google Scholar

    [4]

    Kéna-Cohen S, Forrest S R 2010 Nat. Photonics 4 371Google Scholar

    [5]

    Ramezani M, Halpin A, Fernández-Domínguez A I, Feist J, Rodriguez S R K, Garcia-Vidal F J, Gómez Rivas J 2017 Optica 4 31Google Scholar

    [6]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87Google Scholar

    [7]

    Zasedatelev A V, Baranikov A V, Sannikov D, et al. 2021 Nature 597 493Google Scholar

    [8]

    Sillanpää M A, Park J I, Simmonds R W 2007 Nature 449 438Google Scholar

    [9]

    Wei H, Yan X H, Niu Y J, Li Q, Jia Z L, Xu H X 2021 Adv. Funct. Mater. 31 2100889Google Scholar

    [10]

    Rudin S, Reinecke T L 1999 Phys. Rev. B 59 10227Google Scholar

    [11]

    Wu X H, Gray S K, Pelton M 2010 Opt. Express 18 23633Google Scholar

    [12]

    Cui G Q, Raymer M G 2006 Phys. Rev. A 73 053807Google Scholar

    [13]

    Leng H X, Szychowski B, Daniel M C, Pelton M 2018 Nat. Commun. 9 4012Google Scholar

    [14]

    Lo T W, Zhang Q, Qiu M, Guo X Y, Meng Y J, Zhu Y, Xiao J J, Jin W, Leung C W, Lei D Y 2019 ACS Photonics 6 411Google Scholar

    [15]

    Li N, Han Z H, Huang Y M, Liang K, Wang X F, Wu F, Qi X Y, Shang Y X, Yu L, Ding B Q 2020 J. Mater. Chem. C 8 7672Google Scholar

    [16]

    Li L, Wang L, Du C L, Guan Z Y, Xiang Y X, Wu W, Ren M X, Zhang X Z, Tang A W, Cai W, Xu J J 2020 Nanoscale 12 3112Google Scholar

    [17]

    Groß H, Hamm J M, Tufarelli T, Hess O, Hecht B 2018 Sci. Adv. 4 eaar4906Google Scholar

    [18]

    Zengin G, Johansson G, Johansson P, Antosiewicz T J, Käll M, Shegai T 2013 Sci. Rep. 3 3074Google Scholar

    [19]

    Zheng D, Zhang S P, Deng Q, Kang M, Nordlander P, Xu H X 2017 Nano Lett. 17 3809Google Scholar

    [20]

    Wen J X, Wang H, Wang W L, Deng Z X, Zhuang C, Zhang Y, Liu F, She J C, Chen J, Chen H J, Deng S Z, Xu N S 2017 Nano Lett. 17 4689Google Scholar

    [21]

    Wen J X, Wang H, Chen H J, Deng S Z, Xu N S 2018 Chin. Phys. B 27 096101Google Scholar

    [22]

    Jiang Y Z, Wang H, Wen S Y, Chen H J, Deng S Z 2020 ACS Nano 14 13841Google Scholar

    [23]

    Liu R M, Zhou Z K, Yu Y C, Zhang T W, Wang H, Liu G H, Wei Y M, Chen H J, Wang X H 2017 Phys. Rev. Lett. 118 237401Google Scholar

    [24]

    Munkhbat B, Baranov D G, Bisht A, Hoque M A, Karpiak B, Dash S P, Shegai T 2020 ACS Nano 14 1196Google Scholar

    [25]

    Kato F, Minamimoto H, Nagasawa F, Yamamoto Y S, Itoh T, Murakoshi K 2018 ACS Photonics 5 788Google Scholar

    [26]

    Zengin G, Wersäll M, Nilsson S, Antosiewicz T J, Käll M, Shegai T 2015 Phys. Rev. Lett. 114 157401Google Scholar

    [27]

    DeLacy B G, Miller O D, Hsu C W, Zander Z, Lacey S, Yagloski R, Fountain A W, Valdes E, Anquillare E, Soljačić M, Johnson S G, Joannopoulos J D 2015 Nano Lett. 15 2588Google Scholar

    [28]

    Munkhbat B, Wersäll M, Baranov D G, Antosiewicz T J, Shegai T 2018 Sci. Adv. 4 eaas9552Google Scholar

    [29]

    Wang M S, Krasnok A, Zhang T Y, Scarabelli L, Liu H, Wu Z L, Liz-Marzán L M, Terrones M, Alù A, Zheng Y B 2018 Adv. Mater. 30 1705779Google Scholar

    [30]

    Wersäll M, Cuadra J, Antosiewicz T J, Balci S, Shegai T 2017 Nano Lett. 17 551Google Scholar

    [31]

    Wersäll M, Munkhbat B, Baranov D G, Herrera F, Cao J, Antosiewicz T J, Shegai T 2019 ACS Photonics 6 2570Google Scholar

    [32]

    Yankovich A B, Munkhbat B, Baranov D G, et al. 2019 Nano Lett. 19 8171Google Scholar

    [33]

    Cuadra J, Baranov D G, Wersäll M, Verre R, Antosiewicz T J, Shegai T 2018 Nano Lett. 18 1777Google Scholar

    [34]

    Jiang P, Song G, Wang Y L, Li C, Wang L L, Yu L 2019 Opt. Express 27 16613Google Scholar

    [35]

    Stührenberg M, Munkhbat B, Baranov D G, Cuadra J, Yankovich A B, Antosiewicz T J, Olsson E, Shegai T 2018 Nano Lett. 18 5938Google Scholar

    [36]

    Lawless J, Hrelescu C, Elliott C, Peters L, McEvoy N, Bradley A L 2020 ACS Appl. Mater. Interfaces 12 46406Google Scholar

    [37]

    Geisler M, Cui X, Wang J, et al. 2019 ACS Photonics 6 994Google Scholar

    [38]

    Xu H X, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357Google Scholar

    [39]

    Xu H X, Aizpurua J, Käll M, Apell P 2000 Phys. Rev. E 62 4318Google Scholar

    [40]

    Schlather A E, Large N, Urban A S, Nordlander P, Halas N J 2013 Nano Lett. 13 3281Google Scholar

    [41]

    Roller E M, Argyropoulos C, Högele A, Liedl T, Pilo-Pais M 2016 Nano Lett. 16 5962Google Scholar

    [42]

    Luo Y, Wang Y C, Liu M Q, Zhu H, Chen O, Zou S L, Zhao J 2020 J. Phys. Chem. Lett. 11 2449Google Scholar

    [43]

    Heintz J, Markešević N, Gayet E Y, Bonod N, Bidault S 2021 ACS Nano 15 14732Google Scholar

    [44]

    Santhosh K, Bitton O, Chuntonov L, Haran G 2016 Nat. Commun. 7 11823Google Scholar

    [45]

    Gupta S N, Bitton O, Neuman T, Esteban R, Chuntonov L, Aizpurua J, Haran G 2021 Nat. Commun. 12 1310Google Scholar

    [46]

    Yan X H, Wei H 2020 Nanoscale 12 9708Google Scholar

    [47]

    Bitton O, Gupta S N, Houben L, Kvapil M, Křápek V, Šikola T, Haran G 2020 Nat. Commun. 11 487Google Scholar

    [48]

    Li G C, Zhang Q, Maier S A, Lei D Y 2018 Nanophotonics 7 1865Google Scholar

    [49]

    Chikkaraddy R, de Nijs B, Benz F, Barrow S J, Scherman O A, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg J J 2016 Nature 535 127Google Scholar

    [50]

    Ojambati O S, Chikkaraddy R, Deacon W D, Horton M, Kos D, Turek V A, Keyser U F, Baumberg J J 2019 Nat. Commun. 10 1049Google Scholar

    [51]

    Katzen J M, Tserkezis C, Cai Q, Li L H, Kim J M, Lee G, Yi G-R, Hendren W R, Santos E J G, Bowman R M, Huang F 2020 ACS Appl. Mater. Interfaces 12 19866Google Scholar

    [52]

    Kleemann M E, Chikkaraddy R, Alexeev E M, et al. 2017 Nat. Commun. 8 1296Google Scholar

    [53]

    Liu X Z, Yi J, Yang S, Lin E C, Zhang Y J, Zhang P Y, Li J F, Wang Y, Lee Y H, Tian Z Q, Zhang X 2021 Nat. Mater. 20 1210Google Scholar

    [54]

    Deng F, Liu H F, Xu L, Lan S, Miroshnichenko A E 2020 Laser Photonics Rev. 14 1900420Google Scholar

    [55]

    Chen X X, Chen Y H, Qin J, Zhao D, Ding B Y, Blaikie R J, Qiu M 2017 Nano Lett. 17 3246Google Scholar

    [56]

    Han X, Wang K, Xing X, Wang M, Lu P 2018 ACS Photonics 5 3970Google Scholar

    [57]

    Huang J, Traverso A J, Yang G, Mikkelsen M H 2019 ACS Photonics 6 838Google Scholar

    [58]

    Hou S, Tobing L Y M, Wang X, Xie Z, Yu J, Zhou J, Zhang D, Dang C, Coquet P, Tay B K, Birowosuto M D, Teo E H T, Wang H 2019 Adv. Opt. Mater. 7 1900857Google Scholar

    [59]

    Sun J W, Hu H T, Zheng D, Zhang D X, Deng Q, Zhang S P, Xu H X 2018 ACS Nano 12 10393Google Scholar

    [60]

    Qin J, Chen Y H, Zhang Z, Zhang Y, Blaikie R J, Ding B, Qiu M 2020 Phys. Rev. Lett. 124 063902Google Scholar

    [61]

    Park K D, May M A, Leng H X, Wang J R, Kropp J A, Gougousi T, Pelton M, Raschke M B 2019 Sci. Adv. 5 eaav5931Google Scholar

  • [1] 闫玮植, 范青, 杨鹏飞, 李刚, 张鹏飞, 张天才. 微光学腔内单原子的俘获及其耦合强度的精确调控.  , 2023, 72(11): 114202. doi: 10.7498/aps.72.20222220
    [2] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强: 表面等离激元直观模型.  , 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [3] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强:表面等离激元直观模型.  , 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [4] 赵世杭, 张元, 吕思远, 程少博, 郑长林, 王鹿霞. 电子能量损失谱探测银纳米棒与介质层强耦合的数值模拟.  , 2022, 71(14): 147302. doi: 10.7498/aps.71.20220194
    [5] 郭绮琪, 陈溢杭. 基于介电常数近零模式与间隙表面等离激元强耦合的增强非线性光学效应.  , 2021, 70(18): 187303. doi: 10.7498/aps.70.20210290
    [6] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器.  , 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [7] 褚培新, 张玉斌, 陈俊学. 开口狭缝调制的耦合微腔中表面等离激元诱导透明特性.  , 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [8] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用.  , 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [9] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究.  , 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [10] 李盼. 表面等离激元纳米聚焦研究进展.  , 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [11] 段雪珂, 任娟娟, 郝赫, 张淇, 龚旗煌, 古英. 微纳光子结构中光子和激子相互作用.  , 2019, 68(14): 144201. doi: 10.7498/aps.68.20190269
    [12] 王栋, 许军, 陈溢杭. 介电常数近零模式与表面等离激元模式耦合实现宽带光吸收.  , 2018, 67(20): 207301. doi: 10.7498/aps.67.20181106
    [13] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗.  , 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [14] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器.  , 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [15] 赵泽宇, 刘晋侨, 李爱武, 徐颖. 金纳米柱阵列表面等离子体激元与J-聚集分子强耦合作用.  , 2016, 65(23): 231101. doi: 10.7498/aps.65.231101
    [16] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究.  , 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [17] 胡梦珠, 周思阳, 韩琴, 孙华, 周丽萍, 曾春梅, 吴兆丰, 吴雪梅. 紫外表面等离激元在基于氧化锌纳米线的半导体-绝缘介质-金属结构中的输运特性研究.  , 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [18] 李文生, 孙宝权. 电场调谐InAs量子点荷电激子光学跃迁.  , 2013, 62(4): 047801. doi: 10.7498/aps.62.047801
    [19] 王垒, 蔡卫, 谭信辉, 向吟啸, 张心正, 许京军. 截面形状对快电子激发纳米双线表面等离激元的影响.  , 2011, 60(6): 067305. doi: 10.7498/aps.60.067305
    [20] 刘文楷, 林世鸣, 张存善. 半导体微腔中腔模、重空穴激子模和轻空穴激子模耦合.  , 2002, 51(9): 2052-2056. doi: 10.7498/aps.51.2052
计量
  • 文章访问数:  8519
  • PDF下载量:  338
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-12
  • 修回日期:  2021-12-17
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-03-20

/

返回文章
返回
Baidu
map