搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于人工表面等离激元结构的超表面磁镜

殷允桥 吴宏伟

引用本文:
Citation:

基于人工表面等离激元结构的超表面磁镜

殷允桥, 吴宏伟

Magnetic mirror metasurfaces based on spoof surface plasmonic structures

Yin Yun-Qiao, Wu Hong-Wei
PDF
HTML
导出引用
  • 提出了一种表面粗糙磁镜的概念, 该界面由人工表面等离激元结构阵列设计而成. 这种人工表面等离激元结构通过周期性地将螺旋金属条插入到介电圆盘构造中以支持强磁偶极共振模式. 特别地, 对于不同外半径下的螺旋结构, 可以通过调节每个结构的螺旋度以支持相同共振频率的磁偶极模式. 为此, 设计了由多种不同尺寸的人工表面等离激元结构排列构成的粗糙磁镜, 计算了其效率并与光滑磁镜做了比较. 本文所提出的粗糙磁镜可以用来增强光与复杂结构的物质之间的相互作用, 亦可能应用于微波和太赫兹波段的生物传感和成像.
    Mirrors can be seen everywhere in daily life and play an important role in modern optical systems. A traditional mirror, which is made of noble metals, usually has a zero electric field strength and maximal magnetic field strength at its surface induced by the out-of-phase of electric field and in-of-phase of magnetic field between the reflected field and incident field due to the boundary condition of perfect electric conductor. As the magnitude of local electric field determines the strength of the light-matter interaction, it is clear that this interaction is suppressed near the mirror surface. Magnetic mirror, which can enhance electric field on the surface, has been widely applied to strong light-matter interaction for biological sensing, material analysis, and imaging. However, the conventional smooth magnetic mirror with a plane surface is difficult to induce sufficient light-matter interaction when the matter has a complex geometrical shape. Here in this work, we propose a concept of magnetic mirror with a rough interface designed by an array of artificial surface plasmonic structures. The artificial surface plasmonic structure on a subwavelength scale is designed by periodically inserting spiral metallic strips into a dielectric cylinder to support the strong magnetic dipolar resonant mode. The magnetic dipolar resonance of the excited structure is induced by the displacement current circle. Therefore, the resonant frequency is related to the geometrical parameters of the helical structure closely. When we reduce the outer radius of the structure, the magnitude of the displacement current circle will change, resulting in blue-shift of the resonant frequency. At the same time, we also find that increasing the spiral degree of the structure will cause the magnetic dipolar resonance frequency to become red-shifted. Particularly, the same magnetic dipolar mode can be supported in a spiral structure of different size by tuning the spiral degree accordingly. In this context, we design a rough magnetic mirror constructed by the artificial surface plasmonic structures with various sizes, and demonstrate that the efficiency of rough magnetic mirror is in agreement with that of smooth magnetic mirror. The proposed rough magnetic mirror can provide the unique ability to enhance the interaction between light and complicated matter for the application of biological sensing and imaging in microwave and terahertz band.
      通信作者: 吴宏伟, hwwu@aust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11847002, 11904008)、中国博士后科学基金(批准号:2019M662132)和安徽省自然科学基金(批准号: 1908085QA21)资助的课题
      Corresponding author: Wu Hong-Wei, hwwu@aust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11847002, 11904008), the China Postdoctoral Science Foundation (Grant No. 2019M662132), and the Natural Science Foundation of Anhui Province, China (Grant No. 1908085QA21)
    [1]

    Esfandyarpour M, Garnett E, Cui Y, McGehee M D, Brongersma1 M L 2014 Nature Nanotech. 9 542Google Scholar

    [2]

    Liu S, Sinclair M B, Mahony T S, Jun Y C, Campione S, Ginn J, Bender D A, Wendt J R, Ihlefeld J F, Clem P G, Wright J B, Brener I 2014 Optica 1 250Google Scholar

    [3]

    Valagiannopoulos C A, Tukiainen A, Aho T, Niemi T, Guina M, Tretyakov S A, Simovski C R 2015 Phys. Rev. B 91 115305Google Scholar

    [4]

    Moitra P, Slovick B A, Li W, Kravchencko I I, Briggs D P, Krishnamurthy S, Valentine J 2015 ACS Photon. 2 692Google Scholar

    [5]

    Zhou Y, He X T, Zhao F L, Dong J W 2016 Opt. Lett. 41 2209Google Scholar

    [6]

    Qin J, Zhao D, Luo S, Wang W, Lu J, Qiu M, Li Q 2017 Opt. Lett. 42 4478Google Scholar

    [7]

    Liu Y P, Dai Y Y, Feng Q C, Shan Y W, Du L, Xia Y Y, Lu G, Liu F, Du G Q, Tian C S, Wu S W, Shi L, Zi J 2017 Opt. Express 25 30754Google Scholar

    [8]

    Wang T T, Luo J, Gao L, Xu P, Lai Y 2014 Appl. Phys. Lett. 104 211904Google Scholar

    [9]

    赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢 2013 62 154204Google Scholar

    Zhao Y, Cao X Y, Gao J, Yao X, Ma J J, Li S J, Yang H H 2013 Acta Phys. Sin. 62 154204Google Scholar

    [10]

    鲁磊, 屈绍波, 马华, 夏颂, 徐卓, 王甲富, 余斐 2013 62 034206Google Scholar

    Lu L, Qu S B, Ma H, Xia S, Xu Z, Wang J F, Yu F 2013 Acta Phys. Sin. 62 034206Google Scholar

    [11]

    郑月军, 高军, 曹祥玉, 李思佳, 杨欢欢, 李文强, 赵一, 刘红喜 2015 64 024219Google Scholar

    Zheng Y J, Gao J, Cao X Y, Li S J, Yang H H, Li W Q, Zhao Y, Liu H X 2015 Acta Phys. Sin. 64 024219Google Scholar

    [12]

    石泰峡, 董丽娟, 陈永强, 刘艳红, 刘丽想, 石云龙 2019 68 214208Google Scholar

    Shi T X, Dong L J, Chen Y Q, Liu Y H, Liu L X, Shi Y L 2019 Acta Phys. Sin. 68 214208Google Scholar

    [13]

    Park J, Kang J H, Kim S J, Liu X G, Brongersma M L 2017 Nano Lett. 17 407Google Scholar

    [14]

    Choi S B, Park D J, Byun S J, Kyoung J, Hwang S W 2015 Adv. Opt. Mater. 3 1719Google Scholar

    [15]

    Schwanecke A S, Fedotov V A, Khardikov V V, Prosvirnin S L, Chen Y, Zheludev N I 2007 J. Opt. A: Pure Appl. Opt. 9 L1Google Scholar

    [16]

    Headland D, Nirantar S, Withayachumnankul W, GutrufP, Abbott D, Bhaskaran M, Fumeaux C, Sriram S 2015 Adv. Mater. 27 7137Google Scholar

    [17]

    Ma Z J, Hanham S M, Albella P, Ng B, Lu H T, Gong Y D, Maier S A, Hong M H 2016 ACS Photon. 3 1010Google Scholar

    [18]

    Lin L, Jiang Z H, Ma D, Yun S, Liu Z W, Werner D H, Mayer T S 2016 Appl. Phys. Lett. 108 171902Google Scholar

    [19]

    Liu W 2017 Phys. Rev. Lett. 119 123902Google Scholar

    [20]

    Liu W X, Sun Y, Lai Z Q, Chen H 2017 J. Opt. Soc. Am. B 34 1899Google Scholar

    [21]

    Pors A, Moreno E, Martin-Moreno L, Pendry J B, Garcia-Vidal F J 2012 Phys. Rev. Lett. 108 223905Google Scholar

    [22]

    Shen X P, Cui T J 2014 Laser Photon. Rev. 8 137Google Scholar

    [23]

    Gao Z, Gao F, Xu H, Zhang Y, Zhang B 2016 Opt. Lett. 41 2181Google Scholar

    [24]

    Li Z, Xu B, Liu L, Xu J, Chen C, Gu C, Zhou Y 2016 Sci. Rep. 6 27158Google Scholar

    [25]

    Huidobro P A, Shen X P, Cuerda J, Moreno E, Martin-Moreno L, Garcia-Vidal F J, Cui T J, Pendry J B 2014 Phys. Rev. X 4 021003

    [26]

    Wu H W, Han Y Z, Chen H J, Zhou W, Li X C, Gao J, Sheng Z Q 2017 Opt. Lett. 42 4521Google Scholar

    [27]

    Rybin M V, Samusev K B, Sinev I S, Semouchkin G, Semouchkina E, Kivshar Y S, Limonov M F 2013 Opt. Express 21 30107Google Scholar

    [28]

    Liao Z, Fernández-Domínguez A I, Zhang J J, Maier S A, CuiT J, Luo Y 2016 ACS Photon. 3 1768Google Scholar

    [29]

    Gentile M J, Nunezsanchez S, Barnes W L 2014 Nano Lett. 14 2339Google Scholar

    [30]

    Feuillet-Palma C, Todorov Y, Vasanelli A 2013 Sci. Rep. 3 1361Google Scholar

    [31]

    Hatab N A, Hsueh C H, Gaddis A L, Retterer S T, Li J H, Eres G, Zhang Z, Gu B 2010 Nano Lett. 10 4952Google Scholar

  • 图 1  (a)人工表面等离激元结构示意图; (b)计算的由不同材料构成的人工表面等离激元结构的散射谱, 其中黑色曲线代表PEC, 蓝色曲线代表Ag, 红色曲线代表Cu; (c)图1(b)中的黑色实线对应的共振峰的近场模式Hz

    Fig. 1.  (a) Schematic diagram of spoof surface plasmonic structure; (b)calculated scattering cross section spectrum of spoof surface plasmonic structure made of different materials, where the black curve represents PEC, the blue curve represents Ag and the red curve represents Cu; (c) near-field pattern ${H}_{ {z}}$ for the resonant peak in the black solid line of (b).

    图 2  (a)不同外半径下, 磁偶极子共振频率与螺旋度的关系, 图中的虚线和4条实线的交点代表对应于相同共振频率的4种结构; (b)不同内半径下, 磁偶极子共振频率与螺旋度的关系; (c) 对于不同的a/d, 磁偶极子共振频率与螺旋度的关系

    Fig. 2.  (a) The magnetic dipole resonance frequency as the function of spiral degree for different outside radii. The intersection of the horizontal dotted line and the four solid curves in the figure represent the four structures corresponding to the same resonance frequency; (b) the relationship between the resonance frequency of magnetic dipole and spiral degree at different inner radii; (c) for different a/d, the relationship between the resonance frequency of magnetic dipole and spiral degree.

    图 3  具有 (a)理想PEC和(b)理想PMC边界壁的电场|E|的分布; (c)−(f)在图2中用“1” “2” “3”和“4”表示的4种结构的电场|E|的分布; (g)−(h) 对于(c)中的结构参数, 用不同材料制成的结构的透射谱和反射谱

    Fig. 3.  Snapshots of the electric field |E| for boundary walls with (a) the ideal PEC and (b) the ideal PMC; (c)−(f) snapshots of the electric field |E| for four structures of Fig. 2 denoted by “1” “2” “3” and “4”; (g)−(h) for the structural parameters of (c), transmission and reflection spectrum of structures made of different materials.

    图 4  (a), (b)不同大小的光滑磁镜的电场|E|的分布及其局部放大图; (c)与(a)和(b)相同, 只是用粗糙的磁镜代替光滑的磁镜

    Fig. 4.  (a), (b) Snapshots of the electric field |E| for smooth magnetic mirror of different sizes and their enlarged views; (c) same as (a) and (b) except replacing smooth magnetic mirror by rough magnetic mirror.

    Baidu
  • [1]

    Esfandyarpour M, Garnett E, Cui Y, McGehee M D, Brongersma1 M L 2014 Nature Nanotech. 9 542Google Scholar

    [2]

    Liu S, Sinclair M B, Mahony T S, Jun Y C, Campione S, Ginn J, Bender D A, Wendt J R, Ihlefeld J F, Clem P G, Wright J B, Brener I 2014 Optica 1 250Google Scholar

    [3]

    Valagiannopoulos C A, Tukiainen A, Aho T, Niemi T, Guina M, Tretyakov S A, Simovski C R 2015 Phys. Rev. B 91 115305Google Scholar

    [4]

    Moitra P, Slovick B A, Li W, Kravchencko I I, Briggs D P, Krishnamurthy S, Valentine J 2015 ACS Photon. 2 692Google Scholar

    [5]

    Zhou Y, He X T, Zhao F L, Dong J W 2016 Opt. Lett. 41 2209Google Scholar

    [6]

    Qin J, Zhao D, Luo S, Wang W, Lu J, Qiu M, Li Q 2017 Opt. Lett. 42 4478Google Scholar

    [7]

    Liu Y P, Dai Y Y, Feng Q C, Shan Y W, Du L, Xia Y Y, Lu G, Liu F, Du G Q, Tian C S, Wu S W, Shi L, Zi J 2017 Opt. Express 25 30754Google Scholar

    [8]

    Wang T T, Luo J, Gao L, Xu P, Lai Y 2014 Appl. Phys. Lett. 104 211904Google Scholar

    [9]

    赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢 2013 62 154204Google Scholar

    Zhao Y, Cao X Y, Gao J, Yao X, Ma J J, Li S J, Yang H H 2013 Acta Phys. Sin. 62 154204Google Scholar

    [10]

    鲁磊, 屈绍波, 马华, 夏颂, 徐卓, 王甲富, 余斐 2013 62 034206Google Scholar

    Lu L, Qu S B, Ma H, Xia S, Xu Z, Wang J F, Yu F 2013 Acta Phys. Sin. 62 034206Google Scholar

    [11]

    郑月军, 高军, 曹祥玉, 李思佳, 杨欢欢, 李文强, 赵一, 刘红喜 2015 64 024219Google Scholar

    Zheng Y J, Gao J, Cao X Y, Li S J, Yang H H, Li W Q, Zhao Y, Liu H X 2015 Acta Phys. Sin. 64 024219Google Scholar

    [12]

    石泰峡, 董丽娟, 陈永强, 刘艳红, 刘丽想, 石云龙 2019 68 214208Google Scholar

    Shi T X, Dong L J, Chen Y Q, Liu Y H, Liu L X, Shi Y L 2019 Acta Phys. Sin. 68 214208Google Scholar

    [13]

    Park J, Kang J H, Kim S J, Liu X G, Brongersma M L 2017 Nano Lett. 17 407Google Scholar

    [14]

    Choi S B, Park D J, Byun S J, Kyoung J, Hwang S W 2015 Adv. Opt. Mater. 3 1719Google Scholar

    [15]

    Schwanecke A S, Fedotov V A, Khardikov V V, Prosvirnin S L, Chen Y, Zheludev N I 2007 J. Opt. A: Pure Appl. Opt. 9 L1Google Scholar

    [16]

    Headland D, Nirantar S, Withayachumnankul W, GutrufP, Abbott D, Bhaskaran M, Fumeaux C, Sriram S 2015 Adv. Mater. 27 7137Google Scholar

    [17]

    Ma Z J, Hanham S M, Albella P, Ng B, Lu H T, Gong Y D, Maier S A, Hong M H 2016 ACS Photon. 3 1010Google Scholar

    [18]

    Lin L, Jiang Z H, Ma D, Yun S, Liu Z W, Werner D H, Mayer T S 2016 Appl. Phys. Lett. 108 171902Google Scholar

    [19]

    Liu W 2017 Phys. Rev. Lett. 119 123902Google Scholar

    [20]

    Liu W X, Sun Y, Lai Z Q, Chen H 2017 J. Opt. Soc. Am. B 34 1899Google Scholar

    [21]

    Pors A, Moreno E, Martin-Moreno L, Pendry J B, Garcia-Vidal F J 2012 Phys. Rev. Lett. 108 223905Google Scholar

    [22]

    Shen X P, Cui T J 2014 Laser Photon. Rev. 8 137Google Scholar

    [23]

    Gao Z, Gao F, Xu H, Zhang Y, Zhang B 2016 Opt. Lett. 41 2181Google Scholar

    [24]

    Li Z, Xu B, Liu L, Xu J, Chen C, Gu C, Zhou Y 2016 Sci. Rep. 6 27158Google Scholar

    [25]

    Huidobro P A, Shen X P, Cuerda J, Moreno E, Martin-Moreno L, Garcia-Vidal F J, Cui T J, Pendry J B 2014 Phys. Rev. X 4 021003

    [26]

    Wu H W, Han Y Z, Chen H J, Zhou W, Li X C, Gao J, Sheng Z Q 2017 Opt. Lett. 42 4521Google Scholar

    [27]

    Rybin M V, Samusev K B, Sinev I S, Semouchkin G, Semouchkina E, Kivshar Y S, Limonov M F 2013 Opt. Express 21 30107Google Scholar

    [28]

    Liao Z, Fernández-Domínguez A I, Zhang J J, Maier S A, CuiT J, Luo Y 2016 ACS Photon. 3 1768Google Scholar

    [29]

    Gentile M J, Nunezsanchez S, Barnes W L 2014 Nano Lett. 14 2339Google Scholar

    [30]

    Feuillet-Palma C, Todorov Y, Vasanelli A 2013 Sci. Rep. 3 1361Google Scholar

    [31]

    Hatab N A, Hsueh C H, Gaddis A L, Retterer S T, Li J H, Eres G, Zhang Z, Gu B 2010 Nano Lett. 10 4952Google Scholar

  • [1] 杨肖杰, 许辉, 徐海烨, 李铭, 于鸿飞, 成昱轩, 侯海良, 陈智全. 基于石墨烯等离激元太赫兹结构的传感及慢光应用.  , 2024, 73(15): 157802. doi: 10.7498/aps.73.20240668
    [2] 王悦, 王伦, 孙柏逊, 郎鹏, 徐洋, 赵振龙, 宋晓伟, 季博宇, 林景全. 表面等离激元与入射光共同作用下的金纳米结构近场调控.  , 2023, 72(17): 175202. doi: 10.7498/aps.72.20230514
    [3] 孙鹏斐, 朱科建, 许鹏飞, 刘兴鹏, 孙堂友, 李海鸥, 周治平. 超紧凑硅基混合表面等离激元光场窄化器件的实验研究.  , 2022, 71(19): 196201. doi: 10.7498/aps.71.20212340
    [4] 姜悦, 王淑英, 王治业, 周华, 卡马勒, 赵颂, 沈向前. 渔网超结构的等离激元模式及其对薄膜电池的陷光调控.  , 2021, 70(21): 218801. doi: 10.7498/aps.70.20210693
    [5] 赵翔宇, 秦楡禄, 季博宇, 郎鹏, 宋晓伟, 林景全. 飞秒传输表面等离激元的近场成像表征与激发效率的调控.  , 2021, 70(10): 107101. doi: 10.7498/aps.70.20201827
    [6] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用.  , 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [7] 刘亮, 韩德专, 石磊. 等离激元能带结构与应用.  , 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [8] 周强, 林树培, 张朴, 陈学文. 旋转对称表面等离激元结构中极端局域光场的准正则模式分析.  , 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [9] 权家琪, 圣宗强, 吴宏伟. 基于人工表面等离激元结构的全向隐身.  , 2019, 68(15): 154101. doi: 10.7498/aps.68.20190283
    [10] 谌璐, 陈跃刚. 金属-光折变材料复合全息结构对表面等离激元的波前调控.  , 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [11] 虞华康, 刘伯东, 吴婉玲, 李志远. 表面等离激元增强的光和物质相互作用.  , 2019, 68(14): 149101. doi: 10.7498/aps.68.20190337
    [12] 王善江, 苏丹, 张彤. 表面等离激元光热效应研究进展.  , 2019, 68(14): 144401. doi: 10.7498/aps.68.20190476
    [13] 徐飞翔, 李晓光, 张振宇. 量子等离激元光子学在若干方向的最新进展.  , 2019, 68(14): 147103. doi: 10.7498/aps.68.20190331
    [14] 王栋, 许军, 陈溢杭. 介电常数近零模式与表面等离激元模式耦合实现宽带光吸收.  , 2018, 67(20): 207301. doi: 10.7498/aps.67.20181106
    [15] 王超, 李勇峰, 沈杨, 丰茂昌, 王甲富, 马华, 张介秋, 屈绍波. 基于人工表面等离激元的双通带频率选择结构设计.  , 2018, 67(20): 204101. doi: 10.7498/aps.67.20180696
    [16] 张超杰, 周婷, 杜鑫鹏, 王同标, 刘念华. 利用石墨烯等离激元与表面声子耦合增强量子摩擦.  , 2016, 65(23): 236801. doi: 10.7498/aps.65.236801
    [17] 黄志芳, 倪亚贤, 孙华. 柱状磁光颗粒的局域表面等离激元共振及尺寸效应.  , 2016, 65(11): 114202. doi: 10.7498/aps.65.114202
    [18] 李占龙, 王一丁, 周密, 门志伟, 孙成林, 里佐威. 水的低频受激拉曼散射.  , 2012, 61(6): 064217. doi: 10.7498/aps.61.064217
    [19] 马宁, 王美山, 杨传路, 熊德林, 李小虎, 马晓光. 激光场强度对NO电子态粒子数布居影响的理论研究.  , 2010, 59(1): 215-221. doi: 10.7498/aps.59.215
    [20] 段路明, 郭光灿. 晶格原子与光场相互作用体系的元激发——能级激元.  , 1997, 46(6): 1114-1117. doi: 10.7498/aps.46.1114
计量
  • 文章访问数:  5743
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-08
  • 修回日期:  2020-07-18
  • 上网日期:  2020-11-26
  • 刊出日期:  2020-12-05

/

返回文章
返回
Baidu
map