搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微纳光栅结构增强聚合物太阳能电池光吸收的研究

李国龙 李进

引用本文:
Citation:

微纳光栅结构增强聚合物太阳能电池光吸收的研究

李国龙, 李进

The light absorption enhancement in polymer solar cells with periodic nano-structures gratings

Li Guo-Long, Li Jin
PDF
导出引用
  • 基于共轭聚合物给体材料P3HT和富勒烯衍生物受体材料PCBM共混的体异质结结构的聚合物太阳能电池, 因其空穴载流子迁移率低而限制了P3HT:PCBM功能层厚度,从而影响了器件对入射光的吸收. 在聚合物功能层表面引入微纳光栅结构可以使器件内电场重新分布并改善器件的光吸收. 本文基于时域有限差分方法仿真得到了光栅周期为1 μ,占空比为0.5以及入射波长分别为500和700 nm 时二维器件内光电场分布;并基于严格耦合波分析方法计算得到了不同光栅深度和光栅占空比的器件光吸收. 理论分析表明:插入微纳光栅结构后,由于光栅衍射增强作用使器件内出现了光聚焦现象;当占空比为0.5时, 光栅深度为10 nm的器件在入射波长为512 nm时,器件光学吸收增加了4.2%. 基于聚二甲基硅氧烷的微压印技术,制备了微纳光栅结构聚合物太阳能,器件结构为 ITO/PEDOT:PSS光栅层/P3HT:PCBM/LiF/Al.该器件与平板器件的性能对比实验证实, 通过在PEDOT:PSS上引入微纳光栅结构,器件能量转化效率增加了31%.
    The thickness of the active layer is limited by its low carrier mobility in the polymer solar cell composed of the blend bulk-heterojunction formed by P3HT as donor material and PCBM as acceptor material, which can affect the light absorption in the polymer solar cell. Nano-structure gratings inserted into polymer layer can redistribute the electrical field inside the device and improve its light absorption. Two-dimensional electrical field distributions inside the polymer solar cell are simulated with the grating period of 1 μ, fill ratio of 0.5 and incident wavelengths of 500 nm and 700 nm based on finite difference time domain. The light absorptions by the devices with different grating depths and fill ratios are calculated based on rigorous coupled wave. The analysis illustrates that light spots occur in the device due to the light diffraction caused by the gratings and the light absorption is increased by 4.2% with a grating fill ratio of 0.5, depth of 10 nm and an incident light wavelength of 512 nm. In experiment, nano-structure gratings are introduced into the devices by the micro-printing technology with PDMS and polymer solar cell is structured with ITO/ PEDOT:PSS gratings/ P3HT:PCBM/ LiF/ Al. The experimental results from the planar and the grating devices prove that the nano-structure gratings embedded in PEDOT:PSS layer increase the power conversion efficiency by 31%.
    • 基金项目: 宁夏科技支撑项目资助的课题.
    • Funds: Project supported by the Supported Science and Technology Program of Ningxia, China.
    [1]

    Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K, Yang Y 2005 Nature Mater. 4 864

    [2]

    Park S H, Roy A, Beaupre S, Cho S, Coates N, Moon J S, Moses D, Leclerc M, Lee K, Heeger A J 2009 Nature Photonics 3 297

    [3]

    Dou L, You J, Yang J, Chen C C, He Y, Murase S, Moriarty T, Emery K, Li G, Yang Y 2012 Nature Photonics 6 180

    [4]

    He Z, Zhong C, Huang X, Wong W Y, Wu H, Chen L, Su S, Cao Y 2011 Adv. Mater. 23 4636

    [5]

    Huo L J, Zhang S Q, Guo X, Xu F, Li Y F, Hou J H 2011 Angew. Chem. Int. Ed. 50 9697

    [6]

    Li Y F 2012 Acc. Chem. Res. 45 723

    [7]

    Chen D, Nakahara A, Wei D, Nordlund D, Thomas P R 2011 Nano Lett. 11 561

    [8]

    Armbruster O, Lungenschmied C, Bauer S 2011 Phys. Rev. B 84 085208

    [9]

    Monestier F, Simon J J, Torchio P, Escoubas L, Flory F, Bailly S, Bettignies R, Stephane G, Defranoux C 2007 Sol. Energy Mater. Sol. Cells 91 405

    [10]

    Chen M X, Nilsson D, Kugler T, Berggren M, Remonen T 2002 Appl. Phys. Lett. 81 2011

    [11]

    Wang J Z, Gu J, Zenhausern F, Sirringhaus H 2006 Appl. Phys. Lett. 88 133502

    [12]

    Emelie P Y, Cagin E, Siddiqui J, Phillips J D, Fulk C, Garland J, Sivananthan S 2007 J. Electron. Mater. 36 841

    [13]

    Green M A, Jordan D 1998 Progress in Photovoltaics 6 169

    [14]

    Roman L S, Inganäs O, Granlund T, Nyberg T, Svensson M, Andersson M R, Hummelen J C 2000 Adv. Mater. 12 189

    [15]

    Nilsson D, Chen M X, Kugler T, Remonen T, Armgarth M, Berggren M 2002 Adv. Mater. 14 51

    [16]

    Boroumand F A, Fry P W, Lidzey D G 2005 Nano Lett. 5 67

    [17]

    Hohnholz D, Okuzaki H, MacDiarmid A G 2005 Adv. Func. Mater. 15 51

    [18]

    Lang U, Rust P, Dual J 2008 Microelectron. Eng. 85 1050

    [19]

    Halik M, Klauk H, Zschieschang U, Kriem T, Schmid G, Radlik W, Wussow K 2002 Appl. Phys. Lett. 81 289

    [20]

    Kang K S, Lim H K, Cho K Y, Han K J, Kim J 2008 J. Phys. D: Appl. Phys. 41 012003

    [21]

    Xia Y, Whitesides G M 1998 Angew. Chem. Int. Ed. Engl. 37 551

    [22]

    Xia Y, Whitesides G M 1998 Annu. Rev. Mater. Sci. 28 153

    [23]

    Quake S R, Scherer A 2000 Science 290 1536

    [24]

    Wei B, Ge D B 2010 Acta Phys. Sin. 54 648 (in Chinese) [魏兵, 葛德彪 2010 54 648]

    [25]

    Moharam M G, Gaylord T K 1982 J. Opt. Soc. Am. 72 1385

    [26]

    Na S I, Kim S S, Jo J, Oh S H, Kim J, Kim D Y 2008 Adv. Funct. Mater. 18 3956

    [27]

    Liu X C, Chakraborty A, Parthasarathib G, Luo C 2007 Proc. SPIE 6556 655602

  • [1]

    Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K, Yang Y 2005 Nature Mater. 4 864

    [2]

    Park S H, Roy A, Beaupre S, Cho S, Coates N, Moon J S, Moses D, Leclerc M, Lee K, Heeger A J 2009 Nature Photonics 3 297

    [3]

    Dou L, You J, Yang J, Chen C C, He Y, Murase S, Moriarty T, Emery K, Li G, Yang Y 2012 Nature Photonics 6 180

    [4]

    He Z, Zhong C, Huang X, Wong W Y, Wu H, Chen L, Su S, Cao Y 2011 Adv. Mater. 23 4636

    [5]

    Huo L J, Zhang S Q, Guo X, Xu F, Li Y F, Hou J H 2011 Angew. Chem. Int. Ed. 50 9697

    [6]

    Li Y F 2012 Acc. Chem. Res. 45 723

    [7]

    Chen D, Nakahara A, Wei D, Nordlund D, Thomas P R 2011 Nano Lett. 11 561

    [8]

    Armbruster O, Lungenschmied C, Bauer S 2011 Phys. Rev. B 84 085208

    [9]

    Monestier F, Simon J J, Torchio P, Escoubas L, Flory F, Bailly S, Bettignies R, Stephane G, Defranoux C 2007 Sol. Energy Mater. Sol. Cells 91 405

    [10]

    Chen M X, Nilsson D, Kugler T, Berggren M, Remonen T 2002 Appl. Phys. Lett. 81 2011

    [11]

    Wang J Z, Gu J, Zenhausern F, Sirringhaus H 2006 Appl. Phys. Lett. 88 133502

    [12]

    Emelie P Y, Cagin E, Siddiqui J, Phillips J D, Fulk C, Garland J, Sivananthan S 2007 J. Electron. Mater. 36 841

    [13]

    Green M A, Jordan D 1998 Progress in Photovoltaics 6 169

    [14]

    Roman L S, Inganäs O, Granlund T, Nyberg T, Svensson M, Andersson M R, Hummelen J C 2000 Adv. Mater. 12 189

    [15]

    Nilsson D, Chen M X, Kugler T, Remonen T, Armgarth M, Berggren M 2002 Adv. Mater. 14 51

    [16]

    Boroumand F A, Fry P W, Lidzey D G 2005 Nano Lett. 5 67

    [17]

    Hohnholz D, Okuzaki H, MacDiarmid A G 2005 Adv. Func. Mater. 15 51

    [18]

    Lang U, Rust P, Dual J 2008 Microelectron. Eng. 85 1050

    [19]

    Halik M, Klauk H, Zschieschang U, Kriem T, Schmid G, Radlik W, Wussow K 2002 Appl. Phys. Lett. 81 289

    [20]

    Kang K S, Lim H K, Cho K Y, Han K J, Kim J 2008 J. Phys. D: Appl. Phys. 41 012003

    [21]

    Xia Y, Whitesides G M 1998 Angew. Chem. Int. Ed. Engl. 37 551

    [22]

    Xia Y, Whitesides G M 1998 Annu. Rev. Mater. Sci. 28 153

    [23]

    Quake S R, Scherer A 2000 Science 290 1536

    [24]

    Wei B, Ge D B 2010 Acta Phys. Sin. 54 648 (in Chinese) [魏兵, 葛德彪 2010 54 648]

    [25]

    Moharam M G, Gaylord T K 1982 J. Opt. Soc. Am. 72 1385

    [26]

    Na S I, Kim S S, Jo J, Oh S H, Kim J, Kim D Y 2008 Adv. Funct. Mater. 18 3956

    [27]

    Liu X C, Chakraborty A, Parthasarathib G, Luo C 2007 Proc. SPIE 6556 655602

  • [1] 刘辉城, 许佳雄, 林俊辉. Si衬底Cu2ZnSnS4太阳能电池的数值分析.  , 2021, 70(10): 108801. doi: 10.7498/aps.70.20201936
    [2] 牛青辰, 苟君, 王军, 蒋亚东. 钛圆盘阵列增强微测辐射热计太赫兹波吸收特性.  , 2019, 68(20): 208501. doi: 10.7498/aps.68.20190902
    [3] 孙凯, 何志群, 梁春军. 多温度阶梯退火对有机聚合物太阳能电池器件性能的影响.  , 2014, 63(4): 048801. doi: 10.7498/aps.63.048801
    [4] 王飞, 魏兵, 杨谦, 李林茜. 基于Newmark算法的任意磁化方向铁氧体电磁散射时域有限差分分析.  , 2014, 63(16): 164101. doi: 10.7498/aps.63.164101
    [5] 王飞, 魏兵, 李林茜. 色散介质电磁特性时域有限差分分析的Newmark方法.  , 2014, 63(10): 104101. doi: 10.7498/aps.63.104101
    [6] 刘志方, 赵谡玲, 徐征, 杨倩倩, 赵玲, 刘志民, 陈海涛, 杨一帆, 高松, 徐叙瑢. 利用Ag2O/PEDOT:PSS复合缓冲层提高P3HT:PCBM聚合物太阳能电池器件性能的研究.  , 2014, 63(6): 068402. doi: 10.7498/aps.63.068402
    [7] 龚伟, 徐征, 赵谡玲, 刘晓东, 杨倩倩, 樊星. NPB阳极缓冲层对反型结构聚合物太阳能电池性能的影响.  , 2014, 63(7): 078801. doi: 10.7498/aps.63.078801
    [8] 蒲年年, 李海蓉, 谢龙珍. NiOx作为空穴传输层对有机太阳能电池光吸收的影响.  , 2014, 63(6): 067201. doi: 10.7498/aps.63.067201
    [9] 杨利霞, 马辉, 施卫东, 施丽娟, 于萍萍. 基于表面阻抗边界条件的等离子体薄涂层电磁散射的时域有限差分分析.  , 2013, 62(3): 034102. doi: 10.7498/aps.62.034102
    [10] 王飞, 魏兵. 电各向异性色散介质电磁散射时域有限差分分析的半解析递推卷积方法.  , 2013, 62(4): 044101. doi: 10.7498/aps.62.044101
    [11] 王飞, 魏兵. 任意磁化方向铁氧体电磁散射时域有限差分分析的Z变换方法.  , 2013, 62(8): 084106. doi: 10.7498/aps.62.084106
    [12] 洪亮, 杨陈楹, 沈伟东, 叶辉, 章岳光, 刘旭. 基于亚波长二维光栅的入射角不敏感颜色滤光片研究.  , 2013, 62(6): 064204. doi: 10.7498/aps.62.064204
    [13] 李国龙, 何力军, 李进, 李学生, 梁森, 高忙忙, 袁海雯. 纳米银增强聚合物太阳能电池光吸收的研究.  , 2013, 62(19): 197202. doi: 10.7498/aps.62.197202
    [14] 潘惠平, 薄连坤, 黄太武, 张毅, 于涛, 姚淑德. 铜铟镓硒太阳能电池多层膜的结构分析.  , 2012, 61(22): 228801. doi: 10.7498/aps.61.228801
    [15] 肖正国, 曾雪松, 郭浩民, 赵志飞, 史同飞, 王玉琦. NiO透明导电薄膜的制备及在聚合物太阳能电池中的应用.  , 2012, 61(2): 026802. doi: 10.7498/aps.61.026802
    [16] 黄卓寅, 李国龙, 李衎, 甄红宇, 沈伟东, 刘向东, 刘旭. 基于透射率曲线确定聚合物太阳能电池功能层的光学常数和厚度.  , 2012, 61(4): 048801. doi: 10.7498/aps.61.048801
    [17] 李国龙, 李进, 甄红宇. TiO2光学间隔层增强聚合物太阳能电池光吸收的分析.  , 2012, 61(20): 207203. doi: 10.7498/aps.61.207203
    [18] 郝志红, 胡子阳, 张建军, 郝秋艳, 赵颖. 掺杂PEDOT ∶PSS对聚合物太阳能电池性能影响的研究.  , 2011, 60(11): 117106. doi: 10.7498/aps.60.117106
    [19] 李国龙, 黄卓寅, 李衎, 甄红宇, 沈伟东, 刘旭. 基于光学与光—电转换模型对聚合物电池功能层厚度与性能相关性分析.  , 2011, 60(7): 077207. doi: 10.7498/aps.60.077207
    [20] 邢宏伟, 彭应全, 杨青森, 马朝柱, 汪润生, 李训栓. 有机体异质结太阳能电池的数值分析.  , 2008, 57(11): 7374-7379. doi: 10.7498/aps.57.7374
计量
  • 文章访问数:  6929
  • PDF下载量:  1050
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-16
  • 修回日期:  2012-05-07
  • 刊出日期:  2012-10-05

/

返回文章
返回
Baidu
map