Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Three-dimensional porous ceramic framework reinforcing composite electrolyte

Cui Long-Fei Ju Jiang-Wei Cui Guang-Lei

Citation:

Three-dimensional porous ceramic framework reinforcing composite electrolyte

Cui Long-Fei, Ju Jiang-Wei, Cui Guang-Lei
PDF
HTML
Get Citation
  • All solid-state lithium batteries demonstrate excellent characteristics of high safety and energy density, which make them very promising energy storage devices. Among various kinds of solid electrolytes, rigid-flexible coupling composite electrolyte combines the advantages of rigid solid inorganic ceramic electrolytes, i.e., excellent room temperature ionic conductivity, and of flexible solid polymer electrolytes, i.e., the flexibility, and thereby is considered to be one of the most ideal electrolyte candidates for all solid-state lithium batteries. Dispersing 0- or 1-dimensional inorganic fillers is a widespread method to fabricate rigid-flexible coupling composite, where the ionic conductivity of polymer can be improved by one order of magnitude mainly due to the decreased degree of crystallinity. However, aim to further increase the ionic conductivity by increasing the filler content cannot be accomplished because of the fillers' tendency to aggregation. what's more, the highly conductive inorganic fillers are separated by the polymer phase and thus cannot form fast and continuous Li+ transportation channels. Accordingly, inorganic fillers which can provide percolated pathway for Li+ transportation and avoid aggregating are highly desirable. To this end, different from adding 0- or 1-dimensional inorganic fillers into polymer matrices, polymers can be cast into porous inorganic substrates, that is, 3-dimensional porous ceramic framework, to obtain organic-inorganic composite electrolyte, in which organic phase, inorganic phase, and organic/inorganic interfacial phase are all continuous for fast Li+ transportation. And meanwhile, its self-supported structure prevents the agglomeration of inorganic particles. In recent years, the 3-dimensional porous ceramic framework has been more and more frequently used in rigid-flexible coupling composite electrolytes. To have a deep insight into the positive function of 3-dimensional porous ceramic framework, in this review, we firstly reveal the mechanism of the huge improvement in the ionic conductivity and thermostability of the composite electrolyte. Then, we summarize the frequently used preparation methods of the 3-dimensional porous ceramic framework reported recently. Finally, for the future perspective of rigid-flexible coupling composite electrolyte development, we propose two feasible improvement strategies. This review can thereby provide great significance of designing solid electrolytes with comprehensive performance for all solid-state lithium batteries with high energy density and superior safety.
      Corresponding author: Cui Guang-Lei, cuigl@qibebt.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51902325)
    [1]

    Goodenough J B, Park K S 2013 J. Am. Chem. Soc. 135 1167Google Scholar

    [2]

    Ellingsen L A W, Hung C R, Majeau Bettez G, Singh B, Chen Z, Whittingham M S, Strømman A H 2016 Nat. Nanotechnol. 11 1039Google Scholar

    [3]

    Manthiram A, Yu X W, Wang S F 2017 Nat. Rev. Mater. 2 16103Google Scholar

    [4]

    Liu J, Bao Z N, Cui Y, Dufek E J, Goodenough J B, Khalifah P, Li Q Y, Liaw B Y, Liu P, Manthiram A, Meng Y S, Subramanian V R, Toney M F, Viswanathan V V, Whittingham M S, Xiao J, Xu W, Yang J H, Yang X Q, Zhang J G 2019 Nat. Energy 4 180Google Scholar

    [5]

    Sun C W, Liu J, Gong Y D, Wilkinson D P, Zhang J J 2017 Nano Energy 33 363Google Scholar

    [6]

    Wu X H, Pan K C, Jia M M, Ren Y F, He H Y, Zhang L, Zhang S J 2019 Green Energy Environ. 4 360Google Scholar

    [7]

    Yue L P, Ma J, Zhang J J, Zhao J W, Dong S M, Liu Z H, Cui G L, Chen L Q 2016 Energy Storage Mater. 5 139Google Scholar

    [8]

    Zeng X X, Yin Y X, Li N W, Du W C, Guo Y G, Wan L J 2016 J. Am. Chem. Soc. 138 15825Google Scholar

    [9]

    Zhu P, Yan C Y, Dirican M, Zhu J D, Zang J, Selvan R K, Chung C C, Jia H, Li Y, Kiyak Y, Wu N Q, Zhang X W 2018 J. Mater. Chem. A 6 4279Google Scholar

    [10]

    Croce F, Appetecchi G B, Persi L, Scrosati B 1998 Nature 394 456Google Scholar

    [11]

    Wu J F, Guo X 2017 Solid State Ionics 310 38Google Scholar

    [12]

    Wu J F, Pang W K, Peterson V K, Wei L, Guo X 2017 ACS Appl. Mater. Interfaces 9 12461Google Scholar

    [13]

    Yang L Y, Wang Z J, Feng Y C, Tan R, Zuo Y X, Gao R G, Zhao Y, Han L, Wang Z Q, Pan F 2017 Adv. Energy Mater. 7 1701437Google Scholar

    [14]

    Xuefu S, Nemori H, Mitsuoka S, Xu P, Matsui M, Takeda Y, Yamamoto O, Imanishi N 2016 Front. Energy Res. 4 1Google Scholar

    [15]

    Dietrich C, Weber D A, Sedlmaier S J, Indris S, Culver S P, Walter D, Janek J, Zeier W G 2017 J. Mater. Chem. A 5 18111Google Scholar

    [16]

    Ohtomo T, Hayashi A, Tatsumisago M, Tsuchida Y, Hama S, Kawamoto K 2013 J. Power Sources 233 231Google Scholar

    [17]

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A 2011 Nat. Mater. 10 682Google Scholar

    [18]

    Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R 2016 Nat. Energy 1 16030Google Scholar

    [19]

    Li Y T, Xu B Y, Xu H H, Duan H N, Lü X J, Xin S, Zhou W D, Xue L G, Fu G T, Manthiram A, Goodenough J B 2017 Angew. Chem., Int. Ed. 56 753Google Scholar

    [20]

    Zhou W D, Wang S F, Li Y T, Xin S, Manthiram A, Goodenough J B 2016 J. Am. Chem. Soc. 138 9385Google Scholar

    [21]

    Zhang J J, Zhao J H, Yue L P, Wang Q F, Chai J C, Liu Z H, Zhou X H, Li H, Guo Y G, Cui G L, Chen L Q 2015 Adv. Energy Mater. 5 1501082Google Scholar

    [22]

    Yu X R, Wang L L, Ma J, Sun X W, Zhou X H, Cui G L 2020 Adv. Energy Mater. 10 1903939Google Scholar

    [23]

    Liu W, Lee S W, Lin D C, Shi F F, Wang S, Sendek A D, Cui Y 2017 Nat. Energy 2 17035Google Scholar

    [24]

    Gong Y, Fu K, Xu S, Dai J, Hamann T R, Zhang L, Hitz G T, Fu Z, Ma Z, McOwen D W, Han X, Hu L B, Wachsman E D 2018 Mater. Today 21 594Google Scholar

    [25]

    Zhai H W, Xu P Y, Ning M Q, Cheng Q, Mandal J, Yang Y 2017 Nano Lett. 17 3182Google Scholar

    [26]

    Ban X Y, Zhang W Q, Chen N, Sun C W 2018 J. Phys. Chem. C 122 9852Google Scholar

    [27]

    Li D, Chen L, Wang T S, Fan L Z 2018 ACS Appl. Mater. Interfaces 10 7069Google Scholar

    [28]

    Li Z, Sha W X, Guo X 2019 ACS Appl. Mater. Interfaces 11 26920Google Scholar

    [29]

    Kotobuki M, Suzuki Y, Munakata H, Kanamura K, Sato Y, Yamamoto K, Yoshida T 2010 J. Electrochem. Soc. 157 A493Google Scholar

    [30]

    Gowda S R, Reddy A L M, Shaijumon M M, Zhan X B, Ci L J, Ajayan P M 2011 Nano Lett. 11 101Google Scholar

    [31]

    Xie X, Hu L B, Pasta M, Wells G F, Kong D, Criddle C S, Cui Y 2011 Nano Lett. 11 291Google Scholar

    [32]

    Jia H P, Gao P F, Yang J, Wang J L, Nuli Y, Yang Z 2011 Adv. Energy Mater. 1 1036Google Scholar

    [33]

    Bonnet Mercier N, Wong R A, Thomas M L, Dutta A, Yamanaka K, Yogi C, Ohta T, Byon H R 2014 Sci. Rep. 4 7127Google Scholar

    [34]

    Chen K, Shen Y, Zhang Y B, Lin Y H, Nan C W 2014 J. Power Sources 249 306

    [35]

    Xu J T, Chou S L, Zhou C F, Gu Q F, Liu H K, Dou S X 2014 J. Power Sources 246 124

    [36]

    Zhu X B, Zhao T S, Wei Z H, Tan P, An L 2015 Energy Environ. Sci. 8 3745Google Scholar

    [37]

    Zhu X B, Zhao T S, Wei Z H, Tan P, Zhao G 2015 Energy Environ. Sci. 8 2782Google Scholar

    [38]

    Fu K, Gong Y H, Dai J Q, Gong A, Han X G, Yao Y G, Wang C W, Wang Y B, Chen Y N, Yan C Y, Li Y J, Wachsman E D, Hu L B 2016 Proc. Natl. Acad. Sci. 113 7094Google Scholar

    [39]

    Fu K, Gong Y H, Hitz G T, McOwen D W, Li Y J, Xu S M, Wen Y, Zhang L, Wang C W, Pastel G, Dai J Q, Liu B Y, Xie H, Yao Y G, Wachsman E D, Hu L B 2017 Energy Environ. Sci. 10 1568Google Scholar

    [40]

    Jiang Z Y, Xia C R, Chen F L 2010 Electrochim. Acta 55 3595Google Scholar

    [41]

    Cui G L 2020 Matter 2 805Google Scholar

    [42]

    Bae J, Li Y T, Zhang J, Zhou X Y, Zhao F, Shi Y, Goodenough J B, Yu G H 2018 Angew. Chem., Int. Ed. 57 2096Google Scholar

    [43]

    Jiang T L, He P G, Wang G X, Shen Y, Nan C W, Fan L Z 2020 Adv. Energy Mater. 10 1903376Google Scholar

    [44]

    Ju J W, Wang Y T, Chen B B, Ma J, Dong S M, Chai J C, Qu H T, Cui L F, Wu X X, Cui G L 2018 ACS Appl. Mater. Interfaces 10 13588Google Scholar

    [45]

    Liu W, Liu N, Sun J, Hsu P C, Li Y Z, Lee H W, Cui Y 2015 Nano Lett. 15 2740Google Scholar

    [46]

    Wieczorek W, Such K, Wyciślik H, Płocharski J 1989 Solid State Ionics 36 255Google Scholar

    [47]

    Wieczorek W, Florjanczyk Z, Stevens J R 1995 Electrochim. Acta 40 2251Google Scholar

    [48]

    Bae J, Li Y T, Zhao F, Zhou X Y, Ding Y, Yu G H 2018 Energy Storage Mater. 15 46Google Scholar

    [49]

    Xie H, Yang C P, Fu K, Yao Y G, Jiang F, Hitz E, Liu B Y, Wang S, Hu L L 2018 Adv. Energy Mater. 8 1703474Google Scholar

    [50]

    Wu J F, Chen E Y, Yu Y, Liu L, Wu Y, Pang W K, Peterson V K, Guo X 2017 ACS Appl. Mater. Interfaces 9 1542Google Scholar

    [51]

    Palmer M J, Kalnaus S, Dixit M B, Westover A S, Hatzell K B, Dudney N J, Chen X C 2020 Energy Storage Mater. 26 242

    [52]

    Zekoll S, Marriner Edwards C, Hekselman A K O, Kasemchainan J, Kuss C, Armstrong D E J, Cai D, Wallace R J, Richter F H, Thijssen J H J, Bruce P G 2018 Energy Environ. Sci. 11 185Google Scholar

    [53]

    Cai D, Wang D H, Chen Y J, Zhang S Z, Wang X L, Xia X H, Tu J P 2020 Chem. Eng. J. 394 124993Google Scholar

    [54]

    Xie Z H, Wu Z J, An X W, Yue X Y, Xiaokaiti P, Yoshida A, Abudula A, Guan G Q 2020 J. Membr. Sci. 596 117739Google Scholar

    [55]

    Wang X Z, Zhang Y B, Zhang X, Liu T, Lin Y H, Li L L, Shen Y, Nan C W 2018 ACS Appl. Mater. Interfaces 10 24791Google Scholar

    [56]

    Hitz G T, McOwen D W, Zhang L, Ma Z, Fu Z, Wen Y, Gong Y, Dai J, Hamann T R, Hu L, Wachsman E D 2019 Mater. Today 22 50Google Scholar

    [57]

    Xu S M, McOwen D W, Zhang L, Hitz G T, Wang C W, Ma Z H, Chen C J, Luo W, Dai J Q, Kuang Y D, Hitz E M, Fu K, Gong Y H, Wachsman E D, Hu L 2018 Energy Storage Mater. 15 458Google Scholar

    [58]

    Liu B, Zhang L, Xu S, McOwen D W, Gong Y, Yang C, Pastel G R, Xie H, Fu K, Dai J, Chen C, Wachsman E D, Hu L 2018 Energy Storage Mater. 14 376Google Scholar

    [59]

    Yao P, Zhu B, Zhai H, Liao X, Zhu Y, Xu W, Cheng Q, Jayyosi C, Li Z, Zhu J, Myers K M, Chen X, Yang Y 2018 Nano Lett. 18 6113Google Scholar

    [60]

    Han X G, Gong Y H, Fu K, He X F, Hitz G T, Dai J Q, Pearse A, Liu B Y, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman E D, Hu L B 2017 Nat. Mater. 16 572Google Scholar

    [61]

    Judez X, Eshetu G G, Li C, Rodriguez Martinez L M, Zhang H, Armand M 2018 Joule 2 2208Google Scholar

    [62]

    Wang C, Wang T, Wang L L, Hu Z L, Cui Z L, Li J D, Dong S M, Zhou X H, Cui G L 2019 Adv. Sci. 6 1901036Google Scholar

    [63]

    Huo H Y, Chen Y, Luo J, Yang X F, Guo X X, Sun X L 2019 Adv. Energy Mater. 9 1804004Google Scholar

    [64]

    Chen L, Li W X, Fan L Z, Nan C W, Zhang Q 2019 Adv. Funct. Mater. 29 1901047Google Scholar

  • 图 1  三维骨架在锂电池中的应用发展历史概览[29-39]

    Figure 1.  Development history of three-dimensional framework in lithium battery[29-39].

    图 2  三维多孔陶瓷骨架增强的复合电解质概览[41-44]

    Figure 2.  Overview of the three-dimensional porous ceramic framework reinforcing composite electrolyte[41-44].

    图 3  刚柔并济的有机-无机复合电解质的不同微观结构及其锂离子传输通道的示意图[41] (a) 单相传输: 有机相连续; (b) 双相传输: 有机相、有机/无机界面相连续; (c) 三相传输: 无机相、有机相、有机/无机界面相连续

    Figure 3.  Schematic view of rigid-flexible coupling composites with different microstructures and various Li+ transportation pathway[41]: (a) Single-phase percolation: percolated organic phase; (b) double-phase percolation: percolated organic and organic/inorganic interfacial phase; (c) triple-phase percolation: percolated organic, inorganic, and organic/inorganic interfacial phase.

    图 4  不同固态电解质离子电导率及提升因子的比较[23-27,42,48-50]. 提升因子: 复合电解质电导率与聚合物电导率之比

    Figure 4.  Ionic conductivity and the promotion factor comparison of different solid electrolytes[23-27,42,48-50]. The promotion factor is defined as the ratio of the conductivity of composite to the conductivity of polymer.

    图 5  (a) 以零维颗粒和三维骨架为无机填料的复合电解质在400 ℃下加热2 h前后对比图[48]; (b) 150 ℃加热3 h对具有三维骨架的复合电解质(上)和纯聚合物电解质(下)进行加热测试[55]

    Figure 5.  (a) Photographs of composite electrolytes with 0 dimensional particles and three dimensional framework before and after heating at 400 ℃ for 2 h[48]; (b) heating experiments operated at 150 ℃ for 3 h on the three dimensional composite electrolyte (top) and pure polymer electrolyte (bottom)[55].

    图 6  (a) 以零维颗粒和三维骨架为无机填料的复合电解质进行燃烧测试[38]; (b) 对商用隔膜和具有三维骨架的复合电解质进行燃烧测试[43]

    Figure 6.  (a) Flammability test of composite electrolytes with 0-dimensional particles and three-dimensional framework[38]; (b) flammability test of commercial separator and composite electrolyte with three-dimensional framework[43].

    图 7  模板法制备三维骨架 (a) 以细菌纤维素为模板制备三维骨架的合成过程示意图[49]; (b) 以海绵作为模板制备三维骨架的合成过程示意图[53]; (c) 采用Li6.4La3Zr2Al0.2O12/PEO的LiFePO4-Li全固态电池在0.2 C下的循环性能[53]

    Figure 7.  Template method to prepare three-dimensional skeleton: (a) Schematic demonstrating of the procedure to prepare three-dimensional skeleton with bacteria cellulose as a template[49]; (b) schematic illustration for the synthesis of three-dimensional skeleton with sponge as a template[53]; (c) cycle performance of LiFePO4|Li6.4La3Zr2Al0.2O12/PEO|Li battery at 0.2 C[53].

    图 8  (a) 静电纺丝陶瓷-聚乙烯吡咯烷酮纳米纤维的装置示意图[38]; (b) 静电纺丝法制备纤维增强的聚合物电解质示意图[38]; (c) 纺织纳米纤维网络的扫描电子显微镜图像[38]; (d) 三维骨架网络的扫描电子显微镜图像[38]; (e) 溶液喷涂法制备复合电解质膜示意图[51]

    Figure 8.  (a) Schematic setup of electrospinning garnet-PVP nanofibers[38]; (b) schematic procedure to fabricate the FRPC lithium-ion–conducting membrane[38]; (c) SEM images of the as-spun nanofiber network[38]; (d) SEM image of the garnet nanofiber network[38]; (e) schematic illustration of the fabrication procedure of the composite electrolyte film prepared by solution spraying method[51].

    图 9  (a) 溶胶–凝胶法制备复合电解质的示意图[42]; (b) 3D打印法制备复合电解质的示意图及各阶段相应的SEM图像[52]

    Figure 9.  (a) Schematic representation of the synthesis of composite electrolytes generated by sol-gel method[42]; (b) schematic of the templating procedure used for the synthesis of structured composite electrolyte, generated by 3D printing. Corresponding SEM images of each synthesis stage are included below each schematic[52].

    图 10  (a) LFMP |PVCA-LSnPS|Li和LFMP|LSnPS|Li电池扫描电子显微镜截面图[44]; (b) LFMP |PVCA-LSnPS|Li和LFMP|LSnPS|Li电池恒电流充放电曲线[44]

    Figure 10.  (a) The SEM cross-sectional view of LFMP |PVCA-LSnPS|Li cell and LFMP|LSnPS|Li cell[44]; (b) galvanostatic charge-discharge curves of LFMP|PVCA-LSnPS|Li cell and LFMP|LSnPS|Li cell[44].

    表 1  不同方法制备三维骨架的优缺点

    Table 1.  Advantages and disadvantages of three-dimensional framework prepared by different methods.

    常用制备方法优点缺点文献
    模板法工艺简单、成本低、可大批量制备微观形貌受限于模板[28,49,53]
    静电纺丝法可调控三维骨架的微观形貌调控精度低、操作过程复杂[38,55]
    溶液喷涂法可调控三维骨架的厚度、无机相占比较大工艺繁琐、机械性能差[51]
    溶胶-凝胶法工艺简便、三维骨架孔隙率大微观形貌难以调控[42]
    流延成型法可制备薄的三维骨架、可调控厚度所需粘结剂浓度高[56-58]
    3D打印法可较精准地调控三维骨架微观形貌成本高、制备过程繁琐[52]
    DownLoad: CSV
    Baidu
  • [1]

    Goodenough J B, Park K S 2013 J. Am. Chem. Soc. 135 1167Google Scholar

    [2]

    Ellingsen L A W, Hung C R, Majeau Bettez G, Singh B, Chen Z, Whittingham M S, Strømman A H 2016 Nat. Nanotechnol. 11 1039Google Scholar

    [3]

    Manthiram A, Yu X W, Wang S F 2017 Nat. Rev. Mater. 2 16103Google Scholar

    [4]

    Liu J, Bao Z N, Cui Y, Dufek E J, Goodenough J B, Khalifah P, Li Q Y, Liaw B Y, Liu P, Manthiram A, Meng Y S, Subramanian V R, Toney M F, Viswanathan V V, Whittingham M S, Xiao J, Xu W, Yang J H, Yang X Q, Zhang J G 2019 Nat. Energy 4 180Google Scholar

    [5]

    Sun C W, Liu J, Gong Y D, Wilkinson D P, Zhang J J 2017 Nano Energy 33 363Google Scholar

    [6]

    Wu X H, Pan K C, Jia M M, Ren Y F, He H Y, Zhang L, Zhang S J 2019 Green Energy Environ. 4 360Google Scholar

    [7]

    Yue L P, Ma J, Zhang J J, Zhao J W, Dong S M, Liu Z H, Cui G L, Chen L Q 2016 Energy Storage Mater. 5 139Google Scholar

    [8]

    Zeng X X, Yin Y X, Li N W, Du W C, Guo Y G, Wan L J 2016 J. Am. Chem. Soc. 138 15825Google Scholar

    [9]

    Zhu P, Yan C Y, Dirican M, Zhu J D, Zang J, Selvan R K, Chung C C, Jia H, Li Y, Kiyak Y, Wu N Q, Zhang X W 2018 J. Mater. Chem. A 6 4279Google Scholar

    [10]

    Croce F, Appetecchi G B, Persi L, Scrosati B 1998 Nature 394 456Google Scholar

    [11]

    Wu J F, Guo X 2017 Solid State Ionics 310 38Google Scholar

    [12]

    Wu J F, Pang W K, Peterson V K, Wei L, Guo X 2017 ACS Appl. Mater. Interfaces 9 12461Google Scholar

    [13]

    Yang L Y, Wang Z J, Feng Y C, Tan R, Zuo Y X, Gao R G, Zhao Y, Han L, Wang Z Q, Pan F 2017 Adv. Energy Mater. 7 1701437Google Scholar

    [14]

    Xuefu S, Nemori H, Mitsuoka S, Xu P, Matsui M, Takeda Y, Yamamoto O, Imanishi N 2016 Front. Energy Res. 4 1Google Scholar

    [15]

    Dietrich C, Weber D A, Sedlmaier S J, Indris S, Culver S P, Walter D, Janek J, Zeier W G 2017 J. Mater. Chem. A 5 18111Google Scholar

    [16]

    Ohtomo T, Hayashi A, Tatsumisago M, Tsuchida Y, Hama S, Kawamoto K 2013 J. Power Sources 233 231Google Scholar

    [17]

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A 2011 Nat. Mater. 10 682Google Scholar

    [18]

    Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R 2016 Nat. Energy 1 16030Google Scholar

    [19]

    Li Y T, Xu B Y, Xu H H, Duan H N, Lü X J, Xin S, Zhou W D, Xue L G, Fu G T, Manthiram A, Goodenough J B 2017 Angew. Chem., Int. Ed. 56 753Google Scholar

    [20]

    Zhou W D, Wang S F, Li Y T, Xin S, Manthiram A, Goodenough J B 2016 J. Am. Chem. Soc. 138 9385Google Scholar

    [21]

    Zhang J J, Zhao J H, Yue L P, Wang Q F, Chai J C, Liu Z H, Zhou X H, Li H, Guo Y G, Cui G L, Chen L Q 2015 Adv. Energy Mater. 5 1501082Google Scholar

    [22]

    Yu X R, Wang L L, Ma J, Sun X W, Zhou X H, Cui G L 2020 Adv. Energy Mater. 10 1903939Google Scholar

    [23]

    Liu W, Lee S W, Lin D C, Shi F F, Wang S, Sendek A D, Cui Y 2017 Nat. Energy 2 17035Google Scholar

    [24]

    Gong Y, Fu K, Xu S, Dai J, Hamann T R, Zhang L, Hitz G T, Fu Z, Ma Z, McOwen D W, Han X, Hu L B, Wachsman E D 2018 Mater. Today 21 594Google Scholar

    [25]

    Zhai H W, Xu P Y, Ning M Q, Cheng Q, Mandal J, Yang Y 2017 Nano Lett. 17 3182Google Scholar

    [26]

    Ban X Y, Zhang W Q, Chen N, Sun C W 2018 J. Phys. Chem. C 122 9852Google Scholar

    [27]

    Li D, Chen L, Wang T S, Fan L Z 2018 ACS Appl. Mater. Interfaces 10 7069Google Scholar

    [28]

    Li Z, Sha W X, Guo X 2019 ACS Appl. Mater. Interfaces 11 26920Google Scholar

    [29]

    Kotobuki M, Suzuki Y, Munakata H, Kanamura K, Sato Y, Yamamoto K, Yoshida T 2010 J. Electrochem. Soc. 157 A493Google Scholar

    [30]

    Gowda S R, Reddy A L M, Shaijumon M M, Zhan X B, Ci L J, Ajayan P M 2011 Nano Lett. 11 101Google Scholar

    [31]

    Xie X, Hu L B, Pasta M, Wells G F, Kong D, Criddle C S, Cui Y 2011 Nano Lett. 11 291Google Scholar

    [32]

    Jia H P, Gao P F, Yang J, Wang J L, Nuli Y, Yang Z 2011 Adv. Energy Mater. 1 1036Google Scholar

    [33]

    Bonnet Mercier N, Wong R A, Thomas M L, Dutta A, Yamanaka K, Yogi C, Ohta T, Byon H R 2014 Sci. Rep. 4 7127Google Scholar

    [34]

    Chen K, Shen Y, Zhang Y B, Lin Y H, Nan C W 2014 J. Power Sources 249 306

    [35]

    Xu J T, Chou S L, Zhou C F, Gu Q F, Liu H K, Dou S X 2014 J. Power Sources 246 124

    [36]

    Zhu X B, Zhao T S, Wei Z H, Tan P, An L 2015 Energy Environ. Sci. 8 3745Google Scholar

    [37]

    Zhu X B, Zhao T S, Wei Z H, Tan P, Zhao G 2015 Energy Environ. Sci. 8 2782Google Scholar

    [38]

    Fu K, Gong Y H, Dai J Q, Gong A, Han X G, Yao Y G, Wang C W, Wang Y B, Chen Y N, Yan C Y, Li Y J, Wachsman E D, Hu L B 2016 Proc. Natl. Acad. Sci. 113 7094Google Scholar

    [39]

    Fu K, Gong Y H, Hitz G T, McOwen D W, Li Y J, Xu S M, Wen Y, Zhang L, Wang C W, Pastel G, Dai J Q, Liu B Y, Xie H, Yao Y G, Wachsman E D, Hu L B 2017 Energy Environ. Sci. 10 1568Google Scholar

    [40]

    Jiang Z Y, Xia C R, Chen F L 2010 Electrochim. Acta 55 3595Google Scholar

    [41]

    Cui G L 2020 Matter 2 805Google Scholar

    [42]

    Bae J, Li Y T, Zhang J, Zhou X Y, Zhao F, Shi Y, Goodenough J B, Yu G H 2018 Angew. Chem., Int. Ed. 57 2096Google Scholar

    [43]

    Jiang T L, He P G, Wang G X, Shen Y, Nan C W, Fan L Z 2020 Adv. Energy Mater. 10 1903376Google Scholar

    [44]

    Ju J W, Wang Y T, Chen B B, Ma J, Dong S M, Chai J C, Qu H T, Cui L F, Wu X X, Cui G L 2018 ACS Appl. Mater. Interfaces 10 13588Google Scholar

    [45]

    Liu W, Liu N, Sun J, Hsu P C, Li Y Z, Lee H W, Cui Y 2015 Nano Lett. 15 2740Google Scholar

    [46]

    Wieczorek W, Such K, Wyciślik H, Płocharski J 1989 Solid State Ionics 36 255Google Scholar

    [47]

    Wieczorek W, Florjanczyk Z, Stevens J R 1995 Electrochim. Acta 40 2251Google Scholar

    [48]

    Bae J, Li Y T, Zhao F, Zhou X Y, Ding Y, Yu G H 2018 Energy Storage Mater. 15 46Google Scholar

    [49]

    Xie H, Yang C P, Fu K, Yao Y G, Jiang F, Hitz E, Liu B Y, Wang S, Hu L L 2018 Adv. Energy Mater. 8 1703474Google Scholar

    [50]

    Wu J F, Chen E Y, Yu Y, Liu L, Wu Y, Pang W K, Peterson V K, Guo X 2017 ACS Appl. Mater. Interfaces 9 1542Google Scholar

    [51]

    Palmer M J, Kalnaus S, Dixit M B, Westover A S, Hatzell K B, Dudney N J, Chen X C 2020 Energy Storage Mater. 26 242

    [52]

    Zekoll S, Marriner Edwards C, Hekselman A K O, Kasemchainan J, Kuss C, Armstrong D E J, Cai D, Wallace R J, Richter F H, Thijssen J H J, Bruce P G 2018 Energy Environ. Sci. 11 185Google Scholar

    [53]

    Cai D, Wang D H, Chen Y J, Zhang S Z, Wang X L, Xia X H, Tu J P 2020 Chem. Eng. J. 394 124993Google Scholar

    [54]

    Xie Z H, Wu Z J, An X W, Yue X Y, Xiaokaiti P, Yoshida A, Abudula A, Guan G Q 2020 J. Membr. Sci. 596 117739Google Scholar

    [55]

    Wang X Z, Zhang Y B, Zhang X, Liu T, Lin Y H, Li L L, Shen Y, Nan C W 2018 ACS Appl. Mater. Interfaces 10 24791Google Scholar

    [56]

    Hitz G T, McOwen D W, Zhang L, Ma Z, Fu Z, Wen Y, Gong Y, Dai J, Hamann T R, Hu L, Wachsman E D 2019 Mater. Today 22 50Google Scholar

    [57]

    Xu S M, McOwen D W, Zhang L, Hitz G T, Wang C W, Ma Z H, Chen C J, Luo W, Dai J Q, Kuang Y D, Hitz E M, Fu K, Gong Y H, Wachsman E D, Hu L 2018 Energy Storage Mater. 15 458Google Scholar

    [58]

    Liu B, Zhang L, Xu S, McOwen D W, Gong Y, Yang C, Pastel G R, Xie H, Fu K, Dai J, Chen C, Wachsman E D, Hu L 2018 Energy Storage Mater. 14 376Google Scholar

    [59]

    Yao P, Zhu B, Zhai H, Liao X, Zhu Y, Xu W, Cheng Q, Jayyosi C, Li Z, Zhu J, Myers K M, Chen X, Yang Y 2018 Nano Lett. 18 6113Google Scholar

    [60]

    Han X G, Gong Y H, Fu K, He X F, Hitz G T, Dai J Q, Pearse A, Liu B Y, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman E D, Hu L B 2017 Nat. Mater. 16 572Google Scholar

    [61]

    Judez X, Eshetu G G, Li C, Rodriguez Martinez L M, Zhang H, Armand M 2018 Joule 2 2208Google Scholar

    [62]

    Wang C, Wang T, Wang L L, Hu Z L, Cui Z L, Li J D, Dong S M, Zhou X H, Cui G L 2019 Adv. Sci. 6 1901036Google Scholar

    [63]

    Huo H Y, Chen Y, Luo J, Yang X F, Guo X X, Sun X L 2019 Adv. Energy Mater. 9 1804004Google Scholar

    [64]

    Chen L, Li W X, Fan L Z, Nan C W, Zhang Q 2019 Adv. Funct. Mater. 29 1901047Google Scholar

  • [1] Geng Xiao-Bin, Li Ding-Gen, Xu Bo. Mechanical stress-thermodynamic phase-field simulation of lithium dendrite growth in solid electrolyte battery. Acta Physica Sinica, 2023, 72(22): 220201. doi: 10.7498/aps.72.20230824
    [2] Yang Yuan, Hu Nai-Fang, Jin Yong-Cheng, Ma Jun, Cui Guang-Lei. Research advance of lithium-rich cathode materials in all-solid-state lithium batteries. Acta Physica Sinica, 2023, 72(11): 118801. doi: 10.7498/aps.72.20230258
    [3] He Bing, Lian Yu-Xiang, Wu Mu-Sheng, Luo Wen-Wei, Yang Shen-Bo, Ouyang Chu-Ying. Improvement of performance of halide solid electrolyte by tuning cations. Acta Physica Sinica, 2022, 71(20): 208201. doi: 10.7498/aps.71.20221050
    [4] Lu Jing-Yu, Ke Cheng-Zhi, Gong Zheng-Liang, Li De-Ping, Ci Li-Jie, Zhang Li, Zhang Qiao-Bao. Application of in-situ characterization techniques in all-solid-state lithium batteries. Acta Physica Sinica, 2021, 70(19): 198102. doi: 10.7498/aps.70.20210531
    [5] Feng Wu-Liang, Wang Fei, Zhou Xing, Ji Xiao, Han Fu-Dong, Wang Chun-Sheng. Stability of interphase between solid state electrolyte and electrode. Acta Physica Sinica, 2020, 69(22): 228206. doi: 10.7498/aps.69.20201554
    [6] Zhang Nian, Ren Guo-Xi, Zhang Hui, Zhou Deng, Liu Xiao-Song. Research progress of interface problems and optimization of garnet-type solid electrolyte. Acta Physica Sinica, 2020, 69(22): 228806. doi: 10.7498/aps.69.20201533
    [7] Liang Yu-Hao, Fan Li-Zhen. Mechanical failures in solid-state lithium batteries and their solution. Acta Physica Sinica, 2020, 69(22): 226201. doi: 10.7498/aps.69.20200713
    [8] Zhao Ning, Mu Shuang, Guo Xiang-Xin. Physical issues in solid garnet batteries. Acta Physica Sinica, 2020, 69(22): 228804. doi: 10.7498/aps.69.20201191
    [9] Yu Qi-Peng, Liu Qi, Wang Zi-Qiang, Li Bao-Hua. Anode interface in all-solid-state lithium-metal batteries: Challenges and strategies. Acta Physica Sinica, 2020, 69(22): 228805. doi: 10.7498/aps.69.20201218
    [10] Chen Zhuo,  Fang Lei,  Chen Yuan-Fu. Fabrication and photovoltaic performance of counter electrode of 3D porous carbon composite. Acta Physica Sinica, 2019, 68(1): 017802. doi: 10.7498/aps.68.20181833
    [11] Guo Li-Qiang, Tao Jian, Wen Juan, Cheng Guang-Gui, Yuan Ning-Yi, Ding Jian-Ning. Corn starch solid electrolyte gated proton/electron hybrid synaptic transistor. Acta Physica Sinica, 2017, 66(16): 168501. doi: 10.7498/aps.66.168501
    [12] Yuan Huai-Liang, Li Jun-Peng, Wang Ming-Kui. Recent progress in research on solid organic-inorganic hybrid solar cells. Acta Physica Sinica, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [13] Xu Zhong-Hua, Chen Wei-Bing, Ye Wei-Qiong, Yang Wei-Feng. A Study of tandem structure organic solar cells composed of polymer and small molecular sub-cells. Acta Physica Sinica, 2014, 63(21): 218801. doi: 10.7498/aps.63.218801
    [14] Sun Kai, He Zhi-Qun, Liang Chun-Jun. Effect of multiple temperature-step annealing on the performances of polymer solar cells. Acta Physica Sinica, 2014, 63(4): 048801. doi: 10.7498/aps.63.048801
    [15] Wang Ping, Yin Yu-Zhen, Shen Sheng-Qiang. Numerical study of convection heat transfer in ordered three-dimensional porous media. Acta Physica Sinica, 2014, 63(21): 214401. doi: 10.7498/aps.63.214401
    [16] Gao Bo-Wen, Gao Chao, Que Wen-Xiu, Wei Wei. Recent development of polymer/fullerene photovoltaic cells. Acta Physica Sinica, 2012, 61(19): 194213. doi: 10.7498/aps.61.194213
    [17] Wang Jun-Jun, Gong Jing, Gong Zhen-Li, Yan Xiao-Li, Gao Shu, Wang Bo. Investigations of microstructure and ionic conductivity for (PEO)8-ZnO-LiClO4 polymer nanocomposite electrolytes. Acta Physica Sinica, 2011, 60(12): 127803. doi: 10.7498/aps.60.127803
    [18] Fu Ji-Yong, Ren Jun-Feng, Liu De-Sheng, Xie Shi-Jie. Spin polarization study on one-dimensional ferromagnetic metal/conjugated polymers. Acta Physica Sinica, 2004, 53(6): 1989-1993. doi: 10.7498/aps.53.1989
    [19] FENG WEI, CAO MENG, WEI WEI, WU HONG-CAI, WAN MEI-XIANG, KATSUMI YOSHINO. PROPERTIES OF CONDUCTING POLYMER DONOR-ACCEPTOR COMPOSITE FILMS AND PHOTOVOLTAIC CHARACTERISTICS OF JUNCTION DEVICES. Acta Physica Sinica, 2001, 50(6): 1157-1162. doi: 10.7498/aps.50.1157
    [20] LI ZI-RONG, MENG QING-AN, GUAN DI-HUA, WANG GANG. NMR STUDIES ON SELF DIFFUSION COEFFICIENTS OF LITHIUM IONS IN PAN-BASED GEL POLYMER ELECTROLYTES. Acta Physica Sinica, 1999, 48(6): 1175-1178. doi: 10.7498/aps.48.1175
Metrics
  • Abstract views:  10882
  • PDF Downloads:  522
  • Cited By: 0
Publishing process
  • Received Date:  18 September 2020
  • Accepted Date:  28 October 2020
  • Available Online:  19 November 2020
  • Published Online:  20 November 2020

/

返回文章
返回
Baidu
map