Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improvement of performance of CsPbBr3 perovskite solar cells by polyvinylidene fluoride additive

Yang Mei-Li Zou Li Cheng Jia-Jie Wang Jia-Ming Jiang Yu-Fan Hao Hui-Ying Xing Jie Liu Hao Fan Zhen-Jun Dong Jing-Jing

Citation:

Improvement of performance of CsPbBr3 perovskite solar cells by polyvinylidene fluoride additive

Yang Mei-Li, Zou Li, Cheng Jia-Jie, Wang Jia-Ming, Jiang Yu-Fan, Hao Hui-Ying, Xing Jie, Liu Hao, Fan Zhen-Jun, Dong Jing-Jing
PDF
HTML
Get Citation
  • Recently, the power conversion efficiency (PCE) of organic-inorganic hybrid perovskite solar cells has been enhanced rapidly from 3.8% to 25.8%, which is a top research topic in the field of photovoltaic power generation. However, the preparation of the hybrid perovskite solar cells has high environmental requirements, and the absorber layer is easily caused by the environmental influence and decomposition, resulting in the degradation of device performance. The all-inorganic CsPbBr3 perovskite material has good stability, can be prepared directly in air, and is more economical, showing great potential applications. However, the PCE of all-inorganic CsPbBr3 perovskite solar cells is not high, and at this stage, there is still much room for exploring high-quality controllable preparation of CsPbBr3 films. In this paper, we aim to prepare efficient and stable CsPbBr3 perovskite solar cells with additive engineering.Polymer is one of the most effective additives in perovskite solar cells. The use of polymer additive in perovskite layer can improve the shape-form, structure, and band gap of the film, thus improving the quality of perovskite film. Polyvinylidene fluoride (PVDF) is a cheap polymer with hydrophobic F ions and long flexible polymer chains, and can be used to prepare efficient and stable perovskite solar cells.In this paper, CsPbBr3 perovskite films are prepared by multi-part spin-coating method. PVDF with enriched hydrophobic F is added into the PbBr2 precursor solution as an additive to adjust the crystalline quality of the perovskite film, and the effects of PVDF on the growth process and device performance of the perovskite film are systematically studied. The results show that the PVDF can be used as a template to promote the growth of perovskite crystals, improve the crystal structure and film shape, thus reducing the defect density and charge recombination, and increasing the PCE of the device to 8.17%. The original efficiency of more than 90% can be maintained after 1400 h of storage under unencapsulated condition. Finally, high-efficiency, stable and low-cost CsPbBr3 perovskite solar cells are obtained, which is important in further expanding the optimized design ideas of CsPbBr3 perovskite solar cells. The PVDF can form hydrogen bonds with perovskite or interact with lead ions to improve the structural stability of perovskite, and the F ions in PVDF can improve the moisture stability of perovskite layers.
      Corresponding author: Dong Jing-Jing, jjdong@cugb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11404293) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 2652019121).
    [1]

    Wang D, Li W J, Du Z B, Li G D, Sun W H, Wu J H, Lan Z 2020 ACS Appl. Mater. Interfaces 12 10579Google Scholar

    [2]

    Liu G C, Liu Z H, Wang L, Xie X Y 2021 Chem. Phys. 542 111061Google Scholar

    [3]

    Jin I S, Park S H, Kim K S, Jung J W 2020 J. Alloys Compd. 847 156512Google Scholar

    [4]

    Wan X J, Yu Z, Tian W M, Huang F Z, Jin S Y, Yang X C, Cheng Y B, Hagfeldt A, Sun L C 2020 J. Energy Chem. 46 8Google Scholar

    [5]

    Fu Y J, Sun Y P, Tang H, Wang L Y, Yu H Z, Cao D R 2021 Dye. Pigment. 191 109339Google Scholar

    [6]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [7]

    Huo X N, Wang K X, Yin R, Sun W W, Sun Y S, Gao Y K, You T T, Yin P G 2022 Sol. Energy Mater. Sol. Cells 247 111963Google Scholar

    [8]

    Zhu J W, He B L, Gong Z K, Ding Y, Zhang W Y, Li X K, Zong Z H, Chen H Y, Tang Q W 2020 ChemSusChem 13 1834Google Scholar

    [9]

    Ma J J, Li Y H, Li J, Qin M C, Wu X, Lv Z Y, Hsu Y J, Lu X H, Wu Y C, Fang G J 2020 Nano Energy 75 104933Google Scholar

    [10]

    Yu J X, Liu G X, Chen C M, Li Y, Xu M R, Wang T L, Zhao G, Zhang L 2020 J. Mater. Chem. C 8 6326Google Scholar

    [11]

    Liu X Y, Liu Z Y, Tan X H, Ye H B, Sun B, Xi S, Shi T L, Tang Z R, Liao G L 2019 J. Power Sources 439 227092Google Scholar

    [12]

    Su G D, He B L, Gong Z K, Ding Y, Duan J L, Zhao Y Y, Chen H Y, Tang Q W 2019 Electrochim. Acta 328 135102Google Scholar

    [13]

    Duan J L, Zhao Y Y, He B L, Tang Q W 2018 Angew. Chemie Int. Ed. 130 3787Google Scholar

    [14]

    Duan J L, Zhao Y Y, Yang X Y, Wang Y D, He B L, Tang Q W 2018 Adv. Energy Mater. 8 1802346

    [15]

    Wang K, Jin Z W, Liang L, Bian H, Bai D L, Wang H R, Zhang J R, Wang Q, Liu S Z 2018 Nat. Commun. 9 4395Google Scholar

    [16]

    Lin Y H, Sakai N, Da P, Wu J, Sansom H C, Ramadan A J, Mahesh S, Liu J, Oliver R D J, Lim J, Aspitarte L, Sharma K, Madhu P K, Morales-Vilches A B, Nayak P K, Bai S, Gao F, Grovenor C R M, Johnston M B, Labram J G, Durrant J R, Ball J M, Wenger B, Stannowski B, Snaith H J 2020 Sciences 369 96Google Scholar

    [17]

    Zhu H W, Liu Y H, Eickemeyer F T, Pan L F, Ren D, Ruiz-Preciado M A, Carlsen B, Yang B W, Dong X F, Wang Z W, Liu H L, Wang S R, Zakeeruddin S M, Hagfeldt A, Dar M I, Li X G, Grätzel M 2020 Adv. Mater. 32 1907757Google Scholar

    [18]

    Zhao Y P, Zhu P C, Wang M H, Huang S, Zhao Z P, Tan S, Han T H, Lee J W, Huang T Y, Wang R, Xue J J, Meng D, Huang Y, Marian J, Zhu J, Yang Y 2020 Adv. Mater. 32 1907769Google Scholar

    [19]

    Zheng H Y, Xu X X, Xu S D, Liu G Z, Chen S H, Zhang X X, Chen T W, Pan X 2019 J. Mater. Chem. C 7 4441Google Scholar

    [20]

    Xiang W C, Chen Q, Wang Y Y, Liu M J, Huang F Z, Bu T L, Wang T S, Cheng Y B, Gong X, Zhong J, Liu P, Yao X, Zhao X J 2017 J. Mater. Chem. A 5 5486Google Scholar

    [21]

    Chen C, Wang X, Li Z P, Du X F, Shao Z P, Sun X H, Liu D C, Gao C Y, Hao L Z, Zhao Q Q, Zhang B Q, Cui G L, Pang S P 2022 Angew. Chemie Int. Ed. 61 e202113932Google Scholar

    [22]

    Chang C Y, Chu C Y, Huang Y C, Huang C W, Chang S Y, Chen C A, Chao C Y, Su W F 2015 ACS Appl. Mater. Interfaces 7 4955Google Scholar

    [23]

    Qi Y, Qu J, Moore J, Gollinger K, Shrestha N, Zhao Y, Pradhan N, Tang J, Dai Q 2022 Org. Electron. 104 106487Google Scholar

    [24]

    Bi D Q, Yi C Y, Luo J S, Décoppet J D, Zhang F, Zakeeruddin S M, Li X, Hagfeldt A, Grätzel M 2016 Nat. Energy 1 317Google Scholar

    [25]

    Santhosh N, Daniel R I, Acchutharaman K R, Pandian M S, Ramasamy P 2022 Mater. Today Commun. 31 103446Google Scholar

    [26]

    Zheng H Y, Liu G Z, Wu W W, Xu H F, Pan X 2021 J. Energy Chem. 57 593Google Scholar

    [27]

    Cao X B, Zhang G S, Jiang L, Cai Y F, Wang Y, He X, Zeng Q G, Chen J Z, Jia Y, Wei J Q 2021 Green Chem. 23 2104Google Scholar

    [28]

    Gao B, Meng J 2020 Sol. Energy 211 1223Google Scholar

    [29]

    Paek S, Schouwink P, Athanasopoulou E N, Cho K T, Grancini G, Lee Y, Zhang Y, Stellacci F, Nazeeruddin M K, Gao P 2017 Chem. Mater. 29 3490Google Scholar

    [30]

    Zhang Y, Zhuang X H, Zhou K, Cai C, Hu Z Y, Zhang J, Zhu Y J 2017 J. Mater. Chem. C 5 9037Google Scholar

    [31]

    Chu Z D, Yang M J, Schulz P, Wu D, Ma X, Seifert E, Sun L Y, Li X Q, Zhu K, Lai K J 2017 Nat. Commun. 8 2230Google Scholar

    [32]

    Lau C F J, Deng X F, Zheng J H, Kim J C, Zhang Z L, Zhang M, Bing J M, Wilkinson B, Hu L, Patterson R, Huang S J, Ho-Baillie A 2018 J. Mater. Chem. A 6 5580Google Scholar

    [33]

    Luo J S, Jia C Y, Wan Z Q, Han F, Zhao B W, Wang R L 2017 J. Power Sources 342 886Google Scholar

    [34]

    Liu Z, Shi T, Tang Z, Sun B, Liao G 2016 Nanoscale 8 7017Google Scholar

    [35]

    Chen H, Liu T, Zhou P, Li S, Ren J, He H C, Wang J S, Wang N, Guo S J 2020 Adv. Mater. 32 1905661Google Scholar

    [36]

    Zhang P, Cao F R, Tian W, Li L 2022 Sci. China Mater. 65 321Google Scholar

  • 图 1  CsPbBr3薄膜的制备工艺图

    Figure 1.  Fabrication process of CsPbBr3 film.

    图 2  不同浓度PVDF处理的PbBr2薄膜的SEM图像 (a) 0 mg/mL; (b) 0.3 mg/mL; (c) 0.5 mg/mL; (d) 1.0 mg/mL

    Figure 2.  SEM images of PbBr2 films treated with different PVDF concentration: (a) 0 mg/mL; (b) 0.3 mg/mL; (c) 0.5 mg/mL; (d) 1.0 mg/mL.

    图 3  不同浓度PVDF处理的CsPbBr3薄膜的SEM图像 (a) 0 mg/mL; (b) 0.3 mg/mL; (c) 0.5 mg/mL; (d) 1.0 mg/mL

    Figure 3.  SEM images of CsPbBr3 films treated with different PVDF concentration: (a) 0 mg/mL; (b) 0.3 mg/mL; (c) 0.5 mg/mL; (d) 1.0 mg/mL.

    图 4  PVDF处理前后CsPbBr3薄膜的AFM图像 (a) 控制组; (b) 0.5 mg/mL PVDF

    Figure 4.  AFM images of CsPbBr3 films before and after PVDF treatment: (a) Control; (b) 0.5 mg/mL PVDF.

    图 5  PVDF不同添加量所制备的CsPbBr3薄膜的XRD图谱

    Figure 5.  XRD patterns of CsPbBr3 films prepared with different amounts of PVDF.

    图 6  PVDF不同添加量所制备的CsPbBr3薄膜 (a) XPS全谱图; (b)—(d)分别对应Cs 3d, Pb 4f及Br 3d的高分辨率XPS图谱

    Figure 6.  XPS spectra of CsPbBr3 films prepared with different amounts of PVDF: (a) XPS full spectrum; (b)–(d) correspond to the high-resolution XPS spectra of Cs 3d, Pb 4f and Br 3d, respectively.

    图 7  控制组和0.5 mg PVDF处理的CsPbBr3薄膜的FTIR光谱

    Figure 7.  FTIR spectra of control and 0.5 mg PVDF-treated perovskite films.

    图 8  PVDF处理前后CsPbBr3薄膜的水接触角θca (a) 控制组, θca = 57.30°; (b) 0.5 mg PVDF, θca = 66.31°

    Figure 8.  Water contact angle θca of CsPbBr3 films before and after PVDF treatment: (a) Control, θca = 57.30°; (b) 0.5 mg PVDF, θca = 66.31°.

    图 9  PVDF制备CsPbBr3钙钛矿晶体 (a) 生长过程; (b) 作用机理; (c) 器件结构示意图

    Figure 9.  CsPbBr3 perovskite crystal prepared by PVDF: (a) Schematic growth process; (b) mechanism of action; (c) structural schematic of the device.

    图 10  PVDF不同添加量所制备的CsPbBr3薄膜 (a) UV-vis光谱图; (b) 稳态PL光谱图

    Figure 10.  CsPbBr3 films prepared with different amounts of PVDF: (a) UV-vis spectra; (b) steady-state PL spectra.

    图 11  PVDF不同添加量所制备的CsPbBr3 PSCs的J-V曲线图

    Figure 11.  J-V curves of CsPbBr3 PSCs prepared with different amounts of PVDF.

    图 12  PVDF不同添加量所制备的CsPbBr3-PSCs的各特性的箱试图(每组准备了26个电池装置) (a) FF; (b) VOC; (c) Jsc; (d) PCE

    Figure 12.  Box attempts of different characteristics for CsPbBr3 PSCs prepared with different amounts of PVDF (26 cell devices were prepared for each group): (a) FF; (b) VOC; (c) Jsc; (d) PCE.

    图 13  PVDF不同添加量所制备的CsPbBr3 PSCs的瞬态VOC测量光谱

    Figure 13.  Transient VOC spectrogram of CsPbBr3 PSCs prepared with different amounts of PVDF.

    图 14  PVDF不同添加量所制备的CsPbBr3-PSCs在空气中的稳定性

    Figure 14.  Stability of CsPbBr3-PSCs prepared with different amounts of PVDF in air.

    表 1  PVDF不同添加量所制备的CsPbBr3 PSCs的光伏参数

    Table 1.  Photovoltaic parameters of CsPbBr3 PSCs prepared with different amounts of PVDF.

    器件薄膜类型开路电压
    VOC/V
    短路电流
    Jsc/(mA·cm–2)
    光电转换效
    率PCE/%
    填充因子
    FF/%
    Control1.346.776.8175
    0.3 mg PVDF1.367.037.1274
    0.5 mg PVDF1.318.268.1776
    1.0 mg PVDF1.337.397.4075
    DownLoad: CSV
    Baidu
  • [1]

    Wang D, Li W J, Du Z B, Li G D, Sun W H, Wu J H, Lan Z 2020 ACS Appl. Mater. Interfaces 12 10579Google Scholar

    [2]

    Liu G C, Liu Z H, Wang L, Xie X Y 2021 Chem. Phys. 542 111061Google Scholar

    [3]

    Jin I S, Park S H, Kim K S, Jung J W 2020 J. Alloys Compd. 847 156512Google Scholar

    [4]

    Wan X J, Yu Z, Tian W M, Huang F Z, Jin S Y, Yang X C, Cheng Y B, Hagfeldt A, Sun L C 2020 J. Energy Chem. 46 8Google Scholar

    [5]

    Fu Y J, Sun Y P, Tang H, Wang L Y, Yu H Z, Cao D R 2021 Dye. Pigment. 191 109339Google Scholar

    [6]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [7]

    Huo X N, Wang K X, Yin R, Sun W W, Sun Y S, Gao Y K, You T T, Yin P G 2022 Sol. Energy Mater. Sol. Cells 247 111963Google Scholar

    [8]

    Zhu J W, He B L, Gong Z K, Ding Y, Zhang W Y, Li X K, Zong Z H, Chen H Y, Tang Q W 2020 ChemSusChem 13 1834Google Scholar

    [9]

    Ma J J, Li Y H, Li J, Qin M C, Wu X, Lv Z Y, Hsu Y J, Lu X H, Wu Y C, Fang G J 2020 Nano Energy 75 104933Google Scholar

    [10]

    Yu J X, Liu G X, Chen C M, Li Y, Xu M R, Wang T L, Zhao G, Zhang L 2020 J. Mater. Chem. C 8 6326Google Scholar

    [11]

    Liu X Y, Liu Z Y, Tan X H, Ye H B, Sun B, Xi S, Shi T L, Tang Z R, Liao G L 2019 J. Power Sources 439 227092Google Scholar

    [12]

    Su G D, He B L, Gong Z K, Ding Y, Duan J L, Zhao Y Y, Chen H Y, Tang Q W 2019 Electrochim. Acta 328 135102Google Scholar

    [13]

    Duan J L, Zhao Y Y, He B L, Tang Q W 2018 Angew. Chemie Int. Ed. 130 3787Google Scholar

    [14]

    Duan J L, Zhao Y Y, Yang X Y, Wang Y D, He B L, Tang Q W 2018 Adv. Energy Mater. 8 1802346

    [15]

    Wang K, Jin Z W, Liang L, Bian H, Bai D L, Wang H R, Zhang J R, Wang Q, Liu S Z 2018 Nat. Commun. 9 4395Google Scholar

    [16]

    Lin Y H, Sakai N, Da P, Wu J, Sansom H C, Ramadan A J, Mahesh S, Liu J, Oliver R D J, Lim J, Aspitarte L, Sharma K, Madhu P K, Morales-Vilches A B, Nayak P K, Bai S, Gao F, Grovenor C R M, Johnston M B, Labram J G, Durrant J R, Ball J M, Wenger B, Stannowski B, Snaith H J 2020 Sciences 369 96Google Scholar

    [17]

    Zhu H W, Liu Y H, Eickemeyer F T, Pan L F, Ren D, Ruiz-Preciado M A, Carlsen B, Yang B W, Dong X F, Wang Z W, Liu H L, Wang S R, Zakeeruddin S M, Hagfeldt A, Dar M I, Li X G, Grätzel M 2020 Adv. Mater. 32 1907757Google Scholar

    [18]

    Zhao Y P, Zhu P C, Wang M H, Huang S, Zhao Z P, Tan S, Han T H, Lee J W, Huang T Y, Wang R, Xue J J, Meng D, Huang Y, Marian J, Zhu J, Yang Y 2020 Adv. Mater. 32 1907769Google Scholar

    [19]

    Zheng H Y, Xu X X, Xu S D, Liu G Z, Chen S H, Zhang X X, Chen T W, Pan X 2019 J. Mater. Chem. C 7 4441Google Scholar

    [20]

    Xiang W C, Chen Q, Wang Y Y, Liu M J, Huang F Z, Bu T L, Wang T S, Cheng Y B, Gong X, Zhong J, Liu P, Yao X, Zhao X J 2017 J. Mater. Chem. A 5 5486Google Scholar

    [21]

    Chen C, Wang X, Li Z P, Du X F, Shao Z P, Sun X H, Liu D C, Gao C Y, Hao L Z, Zhao Q Q, Zhang B Q, Cui G L, Pang S P 2022 Angew. Chemie Int. Ed. 61 e202113932Google Scholar

    [22]

    Chang C Y, Chu C Y, Huang Y C, Huang C W, Chang S Y, Chen C A, Chao C Y, Su W F 2015 ACS Appl. Mater. Interfaces 7 4955Google Scholar

    [23]

    Qi Y, Qu J, Moore J, Gollinger K, Shrestha N, Zhao Y, Pradhan N, Tang J, Dai Q 2022 Org. Electron. 104 106487Google Scholar

    [24]

    Bi D Q, Yi C Y, Luo J S, Décoppet J D, Zhang F, Zakeeruddin S M, Li X, Hagfeldt A, Grätzel M 2016 Nat. Energy 1 317Google Scholar

    [25]

    Santhosh N, Daniel R I, Acchutharaman K R, Pandian M S, Ramasamy P 2022 Mater. Today Commun. 31 103446Google Scholar

    [26]

    Zheng H Y, Liu G Z, Wu W W, Xu H F, Pan X 2021 J. Energy Chem. 57 593Google Scholar

    [27]

    Cao X B, Zhang G S, Jiang L, Cai Y F, Wang Y, He X, Zeng Q G, Chen J Z, Jia Y, Wei J Q 2021 Green Chem. 23 2104Google Scholar

    [28]

    Gao B, Meng J 2020 Sol. Energy 211 1223Google Scholar

    [29]

    Paek S, Schouwink P, Athanasopoulou E N, Cho K T, Grancini G, Lee Y, Zhang Y, Stellacci F, Nazeeruddin M K, Gao P 2017 Chem. Mater. 29 3490Google Scholar

    [30]

    Zhang Y, Zhuang X H, Zhou K, Cai C, Hu Z Y, Zhang J, Zhu Y J 2017 J. Mater. Chem. C 5 9037Google Scholar

    [31]

    Chu Z D, Yang M J, Schulz P, Wu D, Ma X, Seifert E, Sun L Y, Li X Q, Zhu K, Lai K J 2017 Nat. Commun. 8 2230Google Scholar

    [32]

    Lau C F J, Deng X F, Zheng J H, Kim J C, Zhang Z L, Zhang M, Bing J M, Wilkinson B, Hu L, Patterson R, Huang S J, Ho-Baillie A 2018 J. Mater. Chem. A 6 5580Google Scholar

    [33]

    Luo J S, Jia C Y, Wan Z Q, Han F, Zhao B W, Wang R L 2017 J. Power Sources 342 886Google Scholar

    [34]

    Liu Z, Shi T, Tang Z, Sun B, Liao G 2016 Nanoscale 8 7017Google Scholar

    [35]

    Chen H, Liu T, Zhou P, Li S, Ren J, He H C, Wang J S, Wang N, Guo S J 2020 Adv. Mater. 32 1905661Google Scholar

    [36]

    Zhang P, Cao F R, Tian W, Li L 2022 Sci. China Mater. 65 321Google Scholar

  • [1] Wang Hui, Zheng De-Xu, Jiang Xiao, Cao Yue-Xian, Du Min-Yong, Wang Kai, Liu Sheng-Zhong, Zhang Chun-Fu. Fabrication of high-performance flexible perovskite solar cells based on synergistic passivation strategy. Acta Physica Sinica, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [2] Cheng Xue-Ming, Cui Wen-Yu, Zhu Lu-Ping, Wang Xia, Liu Zong-Ming, Cao Bing-Qiang. Vertical MSM-type CsPbBr3 thin film photodetectors with fast response speed and low dark current. Acta Physica Sinica, 2024, 73(20): 208501. doi: 10.7498/aps.73.20241075
    [3] Jin Cheng-Cheng, Ding Ling-Ling, Song Zi-Xin, Tao Hai-Jun. Improvement of performance of perovskite solar cells through BaTiO3 doping regulated built-in electric field. Acta Physica Sinica, 2024, 73(3): 038801. doi: 10.7498/aps.73.20231139
    [4] Wang Fei, Yang Zhen-Qing, Xia Yu-Hong, Liu Chang, Lin Chun-Dan. Nonadiabatic molecular dynamics study on effect of Ge/Sn alloy on hot carrier relaxation of CsPbBr3 perovskite. Acta Physica Sinica, 2024, 73(2): 028801. doi: 10.7498/aps.73.20231061
    [5] Zhang Xi-Sheng, Yan Chun-Yu, Hu Li-Na, Wang Jing-Zhou, Yao Chen-Zhong. Perovskite solar cells prepared by processing CsPbBr3 nanocrystalline films in low temperature solution. Acta Physica Sinica, 2024, 73(22): 228101. doi: 10.7498/aps.73.20241152
    [6] Li Pei, Xu Jie, He Chao-Hui, Liu Jia-Xin. Experimental study on irradiation of perovskite solar cells. Acta Physica Sinica, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [7] Zhu Yong-Qi, Liu Yu-Xue, Shi Yang, Wu Cong-Cong. High performance perovskite solar cells synthesized by dissolving FAPbI3 single crystal. Acta Physica Sinica, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [8] Xue Bin-Tao, Zhang Li-Min, Liang Yong-Qi, Liu Ning, Wang Ding-Ping, Chen Liang, Wang Tie-Shan. Proton irradiation induced damage effects in CH3NH3PbI3-based perovskite solar cells. Acta Physica Sinica, 2023, 72(13): 138802. doi: 10.7498/aps.72.20222100
    [9] Zha Jun-Wei, Zha Lei-Jun, Zheng Ming-Sheng. Optimization strategies for energy storage properties of polyvinylidene fluoride composites. Acta Physica Sinica, 2023, 72(1): 018401. doi: 10.7498/aps.72.20222012
    [10] Wang Cheng-Lin, Zhang Zuo-Lin, Zhu Yun-Fei, Zhao Xue-Fan, Song Hong-Wei, Chen Cong. Progress of defect and defect passivation in perovskite solar cells. Acta Physica Sinica, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [11] Zhou Yang, Ren Xin-Gang, Yan Ye-Qiang, Ren Hao, Du Hong-Mei, Cai Xue-Yuan, Huang Zhi-Xiang. Physical mechanism of perovskite solar cell based on double electron transport layer. Acta Physica Sinica, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [12] Ma Shu-Peng, Lin Fei-Yu, Luo Yuan, Zhu Liu, Guo Xue-Yi, Yang Ying. Formation mechanism of CsPbBr3 in multi-step spin-coating process. Acta Physica Sinica, 2022, 71(15): 158101. doi: 10.7498/aps.71.20220171
    [13] Zhong Ting-Ting, Zhang Chen, Shindume Lomboleni Hamukwaya, Xu Wang-Shu, Tang Kun-Peng, Xu Xiang, Sun Wen-Tian, Hao Hui-Ying, Dong Jing-Jing, Liu Hao, Xing Jie. Efficient and stable carbon-based CsPbBr3 solar cells added with PEABr additive. Acta Physica Sinica, 2022, 71(2): 028101. doi: 10.7498/aps.71.20211344
    [14] Wang Pei-Pei, Zhang Chen-Xi, Hu Li-Na, Li Shi-Qi, Ren Wei-Hua, Hao Yu-Ying. Research progress of inverted planar perovskite solar cells based on nickel oxide as hole transport layer. Acta Physica Sinica, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [15] Adopting PEABr additive to obtain efficient and stable carbon-based CsPbBr3 solar cells. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211344
    [16] Liu Yi, Xu Zheng, Zhao Su-Ling, Qiao Bo, Li Yang, Qin Zi-Lun, Zhu You-Qin. Influence of phenyl-C61-butyric acid methyl ester (PCBM) electron transport layer treated by two additives on perovskite solar cell performance. Acta Physica Sinica, 2017, 66(11): 118801. doi: 10.7498/aps.66.118801
    [17] Feng Qi, Li Meng-Kai, Tang Hai-Tong, Wang Xiao-Dong, Gao Zhong-Min, Meng Fan-Ling. Dielectric properties of graphene/poly(vinyl alcohol)/poly (vinylidene fluoride) nanocomposites films. Acta Physica Sinica, 2016, 65(18): 188101. doi: 10.7498/aps.65.188101
    [18] Chai Lei, Zhong Min. Recent research progress in perovskite solar cells. Acta Physica Sinica, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [19] Xiao Hong-Yu, Liu Li-Na, Qin Yu-Kun, Zhang Dong-Mei, Zhang Yong-Sheng, Sui Yong-Ming, Liang Zhong-Zhu. Syntheses of B2O3-doped gem-diamond single crystals. Acta Physica Sinica, 2016, 65(5): 050701. doi: 10.7498/aps.65.050701
    [20] Xu Ren-Xin, Chen Wen, Zhou Jing. Effect of polymer conductance on polarization properties of 0-3 piezoelectric composite. Acta Physica Sinica, 2006, 55(8): 4292-4297. doi: 10.7498/aps.55.4292
Metrics
  • Abstract views:  3767
  • PDF Downloads:  122
  • Cited By: 0
Publishing process
  • Received Date:  19 April 2023
  • Accepted Date:  14 June 2023
  • Available Online:  20 June 2023
  • Published Online:  20 August 2023

/

返回文章
返回
Baidu
map