Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimal design and experimental verification of high-temperature and high-pressure assembly of neutron diffraction based on PE-type press

Jiang Ming-Quan Li Xin Fang Lei-Ming Xie Lei Chen Xi-Ping Hu Qi-Wei Li Qiang Li Qing-Ze Chen Bo He Duan-Wei

Citation:

Optimal design and experimental verification of high-temperature and high-pressure assembly of neutron diffraction based on PE-type press

Jiang Ming-Quan, Li Xin, Fang Lei-Ming, Xie Lei, Chen Xi-Ping, Hu Qi-Wei, Li Qiang, Li Qing-Ze, Chen Bo, He Duan-Wei
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • High-pressure and high-temperature(high-P-T) in-situ neutron diffraction detection method is a field of growing interest, in particular, for its numerous applications in the field of condensed matter physics, crystal chemistry, geophysics, materials science and engineering. In this work, we design and optimize a set of assembly for high-P-T in-situ neutron diffraction experiment in neutron source of China by using Paris-Edinburgh(PE)-type press. The high-P-T experiment is carried out with a high-pressure neutron diffraction spectrometer (Phoenix) of China Mianyang Research Reactor (CMRR). A 1500 KN uniaxial loading system and a 1500 W constant current source provides extreme conditions of high-P-T for PE press. The toroidal anvil we use is made of tungsten carbide. We use two types of gaskets: one is machined from the null-scattering TiZr alloy and the other is made from the thermal insulation ceramic material of ZrO2. High-temperature furnace is formed by graphite. First, a simplified simulation analyses of the pressure change rates in different areas of the entire assembly are carried out, and it is concluded that the gasket I, II, III areas are designed with a gradient decreasing method. The compression ratio of the sample chamber is significantly improved. Then when the gasket reaches the same compression ratio, the cell pressure will be higher than the pressure before optimization. After that, we conduct experimental verification on the optimized design. Through a series of optimization experiments for assembly on the rheological control of gasket, the improvement of thermal insulation performance and the maximization of effective sample volume under high-P-T, the key technical indicators and design scheme of the high-P-T in-situ neutron diffraction platform are verified. The temperature and pressure in the sample cavity are calibrated by using the MgO's high-P-T in-situ neutron diffraction spectrum and equation of state. The in-situ neutron diffraction sample cavity environment of the designed platform can reach the conditions of 11.4 GPa and 1773 K. The successful development of this assembly greatly improves the experimental conditions of CMRR high-P-T neutron diffraction platform. At the same time, it has important reference significance for further improving the high-P-T loading conditions of the PE-type press and expanding the application scope of the PE-type press.
      Corresponding author: Fang Lei-Ming, flmyaya2008@163.com ; He Duan-Wei, duanweihe@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11427810) and the National Key Research and Development Program of China (Grant Nos. 2018YFA0305900, 2016YFA0401503)
    [1]

    Terada N, Qureshi N, Chapon L C, Osakabe T 2018 Nat. Commun. 9 4368Google Scholar

    [2]

    Bourgeat L E, Chapuis J F, Chastagnier J, Demas S, Gonzales J P, Keay M P, Laborier J L, Lelièvre B E, Losserand O, Martin P 2006 Phys. B 385 1303

    [3]

    Aksenov V, Balagurov A, Glazkov V, Kozlenko D, Naumov I, Savenko B, Sheptyakov D, Somenkov V, Bulkin A, Kudryashev V 1999 Phys. B 265 258Google Scholar

    [4]

    Hu Q, Fang L, Li Q, Li X, Chen X, Xie L, Zhang J, Liu F, Lei L, Sun G, He D 2019 High Pressure Res. 39 655Google Scholar

    [5]

    Xiang C, Hu Q, Wang Q, Xie L, Chen X, Fang L, He D 2019 Chin. Phys. B 28 070701Google Scholar

    [6]

    Chen J, Hu Q, Fang L, He D, Chen X, Xie L, Chen B, Li X, Ni X, Fan C, Liang A 2018 Rev. Sci. Instrum. 89 053906Google Scholar

    [7]

    Zhao Y, Dreele R B V, Morgan J G 1999 High Pressure Res. 16 161Google Scholar

    [8]

    He D, Zhao Y, Daemen L, Qian J, Lokshin K, Shen T, Zhang J, Lawson A 2004 J. Appl. Phys. 95 4645Google Scholar

    [9]

    Calder S, An K, Boehler R, Dela C C R, Frontzek M D, Guthrie M, Haberl B, Huq A, Kimber S A J, Liu J, Molaison J J, Neuefeind J, Page K, Dos S A M, Taddei K M, Tulk C, Tucker M G 2018 Rev. Sci. Instrum. 89 092701Google Scholar

    [10]

    Boehler R, Molaison J J, Haberl B 2017 Rev. Sci. Instrum. 88 083905Google Scholar

    [11]

    Schaeffer A M, Cai W, Olejnik E, Molaison J J, Sinogeikin S, Dos S A M, Deemyad S 2015 Nat. Commun. 6 8030Google Scholar

    [12]

    Bull C L, Funnell N P, Tucker M G, Hull S, Francis D J, Marshall W G 2016 High Pressure Res. 36 493Google Scholar

    [13]

    Klotz S, Le G Y, Strässle T, Stuhr U 2008 Appl. Phys. Lett. 93 091904Google Scholar

    [14]

    Hattori T, Sano F A, Arima H, Komatsu K, Yamada A, Inamura Y, Nakatani T, Seto Y, Nagai T, Utsumi W, Iitaka T, Kagi H, Katayama Y, Inoue T, Otomo T, Suzuya K, Kamiyama T, Arai M, Yagi T 2015 Nucl. Instrum. Methods Phys. Res., Sect. A 780 55Google Scholar

    [15]

    Sano F A, Hattori T, Arima H, Yamada A, Tabata S, Kondo M, Nakamura A, Kagi H, Yagi T 2014 Rev. Sci. Instrum. 85 113905Google Scholar

    [16]

    Ohira K S, Hattori T, Harjo S, Ikeda K, Miyata N, Miyazaki T, Aoki H, Watanabe M, Sakaguchi Y, Oku T 2019 Neutron News 30 11Google Scholar

    [17]

    史钰, 陈喜平, 谢雷, 孙光爱, 房雷鸣 2019 68 116101Google Scholar

    Shi Y, Chen X P, Xie L, Sun G A, Fang L M 2019 Acta Phys. Sin. 68 116101Google Scholar

    [18]

    Xie L, Chen X P, Fang L M, Sun G A, Xie C, Chen B, Li H, Ulyanov V A, Solovei V A, Kolkhidashvili M R 2019 Nucl. Instrum. Methods Phys. Res., Sect. A 915 31Google Scholar

    [19]

    Tange Y, Nishihara Y, Tsuchiya T 2009 J. Geophys. Res. 114 03208Google Scholar

    [20]

    Li B, Woody K, Kung J 2006 J. Geophys. Res.: Solid Earth 111 11206Google Scholar

    [21]

    Martíinez D, Le G Y, Mézouar M, Syfosse G, Itié J P, Besson J M 2000 High Pressure Res. 18 339Google Scholar

  • 图 1  高温高压原位中子衍射实验平台总体结构图

    Figure 1.  Overall structure of high temperature and high pressure in-situ neutron diffraction experimental platform.

    图 2  (a)单凹曲面压砧; (b)实验前组装元件实物图 ①碳化钨压砧; ②钛锆合金; ③叶腊石环; ④氧化锆环; ⑤样品氧化镁; ⑥石墨管; ⑦氧化锆管; ⑧氧化锆片; ⑨铼片; ⑩铜箔

    Figure 2.  (a) or ① Optical picture of the single toroidal tungsten carbide anvil; (b) pictures of the high-pressure and high-temperature cell assemblies: ② TiZr alloy gasket; ③ pyrophyllite ring; ④ ZrO2 ring; ⑤ sample of MgO; ⑥ graphite furnace; ⑦ ZrO2 tube; ⑧ ZrO2 disc; ⑨ Re foil; ⑩ Cu foil.

    图 3  模拟压缩前后组装示意图 (a)压缩前; (b)压缩后

    Figure 3.  Assembly diagram before and after simulated compression: (a) Before compression; (b) after compression.

    图 4  优化后压砧和高温高压样品组装结构的 (a)立体示意图与(b)截面示意图 ①碳化钨压砧; ②钛锆合金; ③叶腊石环; ④氧化锆环; ⑤样品氧化镁; ⑥石墨管; ⑦氧化锆管; ⑧氧化锆片; ⑨铼片; ⑩铜箔

    Figure 4.  Schematic diagram of (a)three dimensional and (b)sectional of the high pressure and high temperature cell assembly: ① single toroidal tungsten carbide anvil; ② TiZr alloy gasket; ③ pyrophyllite ring; ④ ZrO2 ring; ⑤ sample of MgO; ⑥ graphite furnace; ⑦ ZrO2 tube; ⑧ ZrO2 disc; ⑨ Re foil; ⑩ Cu foil.

    图 5  系统加载力和加热功率输入曲线示意图

    Figure 5.  Loading force and heating power input curves.

    图 6  (a) 不同加载力下样品MgO的原位中子衍射谱; (b) 样品腔压力-系统加载力关系曲线

    Figure 6.  (a) Neutron diffraction patterns under different loading force; (b) sample/cell pressures-loading force curve.

    图 7  800 kN加载下, 高温高压原位中子衍射谱与数据分析 (a)不同输入功率下MgO的中子衍射谱; (b)样品腔温度和加热输入功率关系曲线

    Figure 7.  High pressure and high temperature neutron diffraction patterns under 800 kN loading force and data analysis: (a) Neutron diffraction patterns of MgO at different heating power; (b) sample/cell temperature-heating power curve.

    表 1  实验前后密封垫I, II, III区域的厚度和不同加载力下对应的样品腔压力

    Table 1.  Thickness of gasket I, II, III zoom before and after compression, and cell pressures under different loading force.

    Before compressionAfter compressionPressure/GPa
    No.IIIIIIIIIIII300 kN500 kN800 kN
    #15.12.02.94.31.12.12.02.9Anvil broken
    #26.02.53.44.01.32.82.84.811.4
    DownLoad: CSV

    表 2  不同系统加载力及加热输入功率下对应MgO样品的晶胞参数、样品腔压力与温度

    Table 2.  Cell parameters, pressure and temperature of MgO under different loading force and heating power.

    Load /kNPower/WMgO
    aV3V/V0P/GPaT/K
    004.22675.4210.1300
    30004.20274.220.9842.8 ± 0.3300
    50004.18673.390.9734.8 ± 0.4 300
    80004.1470.830.93911.4 ± 0.9300
    8002004.17872.920.96711.41197 ± 117
    8003154.18973.480.97411.41406 ± 117
    8005304.20874.520.98811.41773 ± 117
    DownLoad: CSV
    Baidu
  • [1]

    Terada N, Qureshi N, Chapon L C, Osakabe T 2018 Nat. Commun. 9 4368Google Scholar

    [2]

    Bourgeat L E, Chapuis J F, Chastagnier J, Demas S, Gonzales J P, Keay M P, Laborier J L, Lelièvre B E, Losserand O, Martin P 2006 Phys. B 385 1303

    [3]

    Aksenov V, Balagurov A, Glazkov V, Kozlenko D, Naumov I, Savenko B, Sheptyakov D, Somenkov V, Bulkin A, Kudryashev V 1999 Phys. B 265 258Google Scholar

    [4]

    Hu Q, Fang L, Li Q, Li X, Chen X, Xie L, Zhang J, Liu F, Lei L, Sun G, He D 2019 High Pressure Res. 39 655Google Scholar

    [5]

    Xiang C, Hu Q, Wang Q, Xie L, Chen X, Fang L, He D 2019 Chin. Phys. B 28 070701Google Scholar

    [6]

    Chen J, Hu Q, Fang L, He D, Chen X, Xie L, Chen B, Li X, Ni X, Fan C, Liang A 2018 Rev. Sci. Instrum. 89 053906Google Scholar

    [7]

    Zhao Y, Dreele R B V, Morgan J G 1999 High Pressure Res. 16 161Google Scholar

    [8]

    He D, Zhao Y, Daemen L, Qian J, Lokshin K, Shen T, Zhang J, Lawson A 2004 J. Appl. Phys. 95 4645Google Scholar

    [9]

    Calder S, An K, Boehler R, Dela C C R, Frontzek M D, Guthrie M, Haberl B, Huq A, Kimber S A J, Liu J, Molaison J J, Neuefeind J, Page K, Dos S A M, Taddei K M, Tulk C, Tucker M G 2018 Rev. Sci. Instrum. 89 092701Google Scholar

    [10]

    Boehler R, Molaison J J, Haberl B 2017 Rev. Sci. Instrum. 88 083905Google Scholar

    [11]

    Schaeffer A M, Cai W, Olejnik E, Molaison J J, Sinogeikin S, Dos S A M, Deemyad S 2015 Nat. Commun. 6 8030Google Scholar

    [12]

    Bull C L, Funnell N P, Tucker M G, Hull S, Francis D J, Marshall W G 2016 High Pressure Res. 36 493Google Scholar

    [13]

    Klotz S, Le G Y, Strässle T, Stuhr U 2008 Appl. Phys. Lett. 93 091904Google Scholar

    [14]

    Hattori T, Sano F A, Arima H, Komatsu K, Yamada A, Inamura Y, Nakatani T, Seto Y, Nagai T, Utsumi W, Iitaka T, Kagi H, Katayama Y, Inoue T, Otomo T, Suzuya K, Kamiyama T, Arai M, Yagi T 2015 Nucl. Instrum. Methods Phys. Res., Sect. A 780 55Google Scholar

    [15]

    Sano F A, Hattori T, Arima H, Yamada A, Tabata S, Kondo M, Nakamura A, Kagi H, Yagi T 2014 Rev. Sci. Instrum. 85 113905Google Scholar

    [16]

    Ohira K S, Hattori T, Harjo S, Ikeda K, Miyata N, Miyazaki T, Aoki H, Watanabe M, Sakaguchi Y, Oku T 2019 Neutron News 30 11Google Scholar

    [17]

    史钰, 陈喜平, 谢雷, 孙光爱, 房雷鸣 2019 68 116101Google Scholar

    Shi Y, Chen X P, Xie L, Sun G A, Fang L M 2019 Acta Phys. Sin. 68 116101Google Scholar

    [18]

    Xie L, Chen X P, Fang L M, Sun G A, Xie C, Chen B, Li H, Ulyanov V A, Solovei V A, Kolkhidashvili M R 2019 Nucl. Instrum. Methods Phys. Res., Sect. A 915 31Google Scholar

    [19]

    Tange Y, Nishihara Y, Tsuchiya T 2009 J. Geophys. Res. 114 03208Google Scholar

    [20]

    Li B, Woody K, Kung J 2006 J. Geophys. Res.: Solid Earth 111 11206Google Scholar

    [21]

    Martíinez D, Le G Y, Mézouar M, Syfosse G, Itié J P, Besson J M 2000 High Pressure Res. 18 339Google Scholar

  • [1] Xiao Hong-Yu, Wang Shuai, Kang Ru-Wei, Li Yong, Li Shang-Sheng, Tian Chang-Hai, Wang Qiang, Jin Hui, Ma Hong-An. Study on the growth of Li3N doped diamond single crystals under HPHT. Acta Physica Sinica, 2025, 74(7): . doi: 10.7498/aps.74.20241769
    [2] Tian Yi, Du Ming-Hao, Zhang Jia-Wei, He Duan-Wei. Research on pressure transmission and sealing performance of pyrophyllite in a cubic large chamber static high-pressure device. Acta Physica Sinica, 2024, 73(1): 019101. doi: 10.7498/aps.73.20231087
    [3] Xiao Hong-Yu, Li Yong, Bao Zhi-Gang, She Yan-Chao, Wang Ying, Li Shang-Sheng. Effect of catalyst composition on growth and crack defects of large diamond single crystal under high temperature and pressure. Acta Physica Sinica, 2023, 72(2): 020701. doi: 10.7498/aps.72.20221841
    [4] Tian Chun-Ling, Liu Hai-Yan, Wang Biao, Liu Fu-Sheng, Gan Yun-Dan. Phase transition and equation of state of dense liquid nitrogen at high temperature and high pressure. Acta Physica Sinica, 2022, 71(15): 158701. doi: 10.7498/aps.71.20220124
    [5] Yang Gong-Zhang, Xie Lei, Chen Xi-Ping, He Rui-Qi, Han Tie-Xin, Niu Guo-Liang, Fang Lei-Ming, He Duan-Wei. Experimental study of simultaneous high-temperature and high-pressure assembly of Paris-Edinburgh press for neutron diffraction. Acta Physica Sinica, 2022, 71(15): 156101. doi: 10.7498/aps.71.20220419
    [6] You Yue, Li Shang-Sheng, Su Tai-Chao, Hu Mei-Hua, Hu Qiang, Wang Jun-Zhuo, Gao Guang-Jin, Guo Ming-Ming, Nie Yuan. Research progress of large diamond single crystals under high pressure and high temperature. Acta Physica Sinica, 2020, 69(23): 238101. doi: 10.7498/aps.69.20200692
    [7] Zhang Bu-Qiang, Xu Zhen-Yu, Liu Jian-Guo, Yao Lu, Ruan Jun, Hu Jia-Yi, Xia Hui-Hui, Nie Wei, Yuan Feng, Kan Rui-Feng. Temperature measurement method of high temperature and high pressure flow field based on wavelength modulation spectroscopy technology. Acta Physica Sinica, 2019, 68(23): 233301. doi: 10.7498/aps.68.20190515
    [8] Li Yong, Wang Ying, Li Shang-Sheng, Li Zong-Bao, Luo Kai-Wu, Ran Mao-Wu, Song Mou-Sheng. Synthesis of diamond co-doped with B and S under high pressure and high temperature and electrical properties of the synthesized diamond. Acta Physica Sinica, 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [9] Liu Yin-Juan, He Duan-Wei, Wang Pei, Tang Ming-Jun, Xu Chao, Wang Wen-Dan, Liu Jin, Liu Guo-Duan, Kou Zi-Li. Syntheses and studies of superhard composites under high pressure. Acta Physica Sinica, 2017, 66(3): 038103. doi: 10.7498/aps.66.038103
    [10] Li Yong, Li Zong-Bao, Song Mou-Sheng, Wang Ying, Jia Xiao-Peng, Ma Hong-An. Synthesis and electrical properties study of Ib type diamond single crystal co-doped with boron and hydrogen under HPHT conditions. Acta Physica Sinica, 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [11] Fang Chao, Jia Xiao-Peng, Yan Bing-Min, Chen Ning, Li Ya-Dong, Chen Liang-Chao, Guo Long-Suo, Ma Hong-An. Effects of nitrogen and hydrogen co-doped on {100}-oriented single diamond under high temperature and high pressure. Acta Physica Sinica, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [12] Jiang Jian-Jun, Li He-Ping, Dai Li-Dong, Hu Hai-Ying, Zhao Chao-Shuai. Raman spectra based pressure calibration of the non-gauge sapphire anvil cell at high temperature and high pressure. Acta Physica Sinica, 2015, 64(14): 149101. doi: 10.7498/aps.64.149101
    [13] Hu Cui-E, Zeng Zhao-Yi, Cai Ling-Cang. Dynamic stability of Zr under high pressure and high temperature. Acta Physica Sinica, 2015, 64(4): 046401. doi: 10.7498/aps.64.046401
    [14] Zhang Song-Bo, Wang Fang-Biao, Li Fa-Ming, Wen Ge-Hui. HPHT synthesis and magnetic property of -Fe2O3@C core-shell nanorods. Acta Physica Sinica, 2014, 63(10): 108101. doi: 10.7498/aps.63.108101
    [15] Xiao Hong-Yu, Li Shang-Sheng, Qin Yu-Kun, Liang Zhong-Zhu, Zhang Yong-Sheng, Zhang Dong-Mei, Zhang Yi-Shun. Studies on synthesis of boron-doped Gem-diamond single crystals under high temperature and high presure. Acta Physica Sinica, 2014, 63(19): 198101. doi: 10.7498/aps.63.198101
    [16] Li Jun-Jun, Zhao Xue-Ping, Tao Qiang, Huang Xiao-Qing, Zhu Pin-Wen, Cui Tian, Wang Xin. Characterization of TiB2 synthesized at high pressure and high temperature. Acta Physica Sinica, 2013, 62(2): 026202. doi: 10.7498/aps.62.026202
    [17] Li Ying-Hua, Chang Jing-Zhen, Li Xue-Mei, Yu Yu-Ying, Dai Cheng-Da, Zhang Lin. Multiphase equation of states of solid and liquid phases for bismuth. Acta Physica Sinica, 2012, 61(20): 206203. doi: 10.7498/aps.61.206203
    [18] Zhao Yan-Hong, Liu Hai-Feng, Zhang Gong-Mu, Zhang Guang-Cai. Pair interactions of detonation products at high pressure and high temperature. Acta Physica Sinica, 2011, 60(12): 123401. doi: 10.7498/aps.60.123401
    [19] Qin Jie-Ming, Wang Hao, Zeng Fan-Ming, Li Jian-Li, Wan Yu-Chun, Liu Jing-He. Synthesis of MgxZn1-xO under high pressure and high temperature. Acta Physica Sinica, 2010, 59(12): 8910-8914. doi: 10.7498/aps.59.8910
    [20] Sun Xiao-Wei, Chu Yan-Dong, Liu Zi-Jiang, Liu Yu-Xiao, Wang Cheng-Wei, Liu Wei-Min. Molecular dynamics study on the structural and thermodynamic properties of the zinc-blende phase of GaN at high pressures and high temperatures. Acta Physica Sinica, 2005, 54(12): 5830-5836. doi: 10.7498/aps.54.5830
Metrics
  • Abstract views:  7066
  • PDF Downloads:  131
  • Cited By: 0
Publishing process
  • Received Date:  02 June 2020
  • Accepted Date:  20 July 2020
  • Available Online:  09 November 2020
  • Published Online:  20 November 2020

/

返回文章
返回
Baidu
map