搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

巴黎-爱丁堡压机中子衍射高压下温度加载实验

杨功章 谢雷 陈喜平 何瑞琦 韩铁鑫 牛国梁 房雷鸣 贺端威

引用本文:
Citation:

巴黎-爱丁堡压机中子衍射高压下温度加载实验

杨功章, 谢雷, 陈喜平, 何瑞琦, 韩铁鑫, 牛国梁, 房雷鸣, 贺端威

Experimental study of simultaneous high-temperature and high-pressure assembly of Paris-Edinburgh press for neutron diffraction

Yang Gong-Zhang, Xie Lei, Chen Xi-Ping, He Rui-Qi, Han Tie-Xin, Niu Guo-Liang, Fang Lei-Ming, He Duan-Wei
PDF
HTML
导出引用
  • 巴黎-爱丁堡压机(Paris-Edinbrugh press)因具有大体积样品、便携、结构简单等优点, 被广泛应用于中子源进行高压原位中子衍射实验. 但因单轴加压而导致封垫和组装不断沿径向向外流动的特点, 给高压下组装的加热效率、保温效果、上下压砧的绝缘及热电偶连接等方面带来困难, 从而使得巴黎-爱丁堡压机在高压下的温度加载非常具有挑战性. 本文通过对高温高压组装的结构进行优化设计, 提高了组装的加热效率和保温效果. 通过对热电偶引线方式的优化, 实现了高压下温度的直接测量. 设计的HPT-3组装和HPT-3.5 组装在高压下的温度加载最高可分别达到2000 K和1500 K, 并且二者较大的样品尺寸满足中子衍射实验的需求. 原位高温高压中子衍射实验结果说明, HPT-3组装在压力8.5 GPa、温度1508 K的条件下可以获得高质量的样品的中子衍射谱, 同时该结果也进一步验证了所设计组装的良好稳定性.
    Paris-Edinbrugh (PE) press has been widely used in high pressure in-situ neutron diffraction experiments due to its advantages of large sample size, portability and simple structure. However, with the characteristics of uniaxial load of PE press, the weak lateral support makes the gasket and cell assembly continue flowing outward. So, the development of cell assembly of PE press that can simultaneously work under high pressure and high temperature (high P-T) is a great challenge. In this work, we design three-segment high P-T assembly of PE press for neutron diffraction, which can significantly improve the heating efficiency, thermal insulation, and stability of assembly. By using the fanned Cu foil leads of thermocouple, we realize the in-situ measurement of assembly temperature under a high pressure up to 5 GPa. The designed HPT-3 and HPT-3.5 assemblies can arrive at 2034 K and 1515 K respectively, which are measured by thermocouple. The high P-T experiments of HPT-3 assembly are carried out on a high-pressure neutron diffraction spectrometer (Fenghuang) of China Mianyang Research Reactor (CMRR). The results show that the designed assembly can simultaneously achieve high P-T of 8.5 GPa and 1508 K with collecting the high-quality neutron diffraction data of MgO cylindrical sample.
      通信作者: 房雷鸣, flmyaya2008@163.com ; 贺端威, duanweihe@scu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12075215, 11427810)、国家重点研发计划(批准号: 2016YFA0401503)和科学挑战专题(批准号: TZ2016001)资助的课题.
      Corresponding author: Fang Lei-Ming, flmyaya2008@163.com ; He Duan-Wei, duanweihe@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12075215, 11427810), the National Key R&D Program of China (Grant No. 2016YFA0401503), and the Science Challenge Project, China (Grant No. TZ2016001).
    [1]

    Bundy F P 1963 J. Chem. Phys. 38 631Google Scholar

    [2]

    Corrign F R, Bundy F P 1975 J. Chem. Phys. 63 3812Google Scholar

    [3]

    Snider E, Dasenbrock-Gammon N, McBride1 R, Debessai M, Vindana H, Vencatasamy K, Lawler K V, Salamat A, Dias R P 2020 Nature 586 373Google Scholar

    [4]

    Zeng Q, Sheng H, Ding Y, Wang L, Yang W, Jiang J Z, Mao W L, Mao H K 2011 Science 332 1404Google Scholar

    [5]

    Besson J M, Nelmes R J, Hamel G, Loveday J S, Weill G, Hull S 1992 Physica B 180 907Google Scholar

    [6]

    Utsumi W, Kagi H, Komatsu K, Arima H, Nagai T, Okuchi T, Kamiyama T, Uwatoko Y, Matsubayashi K, Yagi T 2009 Nucl. Instrum. Methods A 600 50Google Scholar

    [7]

    Zhao Y S, Zhang J Z, Xu H W, Lokshin K A, He D W, Qian J, Pantea C, Daemen L L, Vogel S C, Ding Y, Xu J 2010 Appl. Phys. A 99 585Google Scholar

    [8]

    Bull C L, Funnell N P, Tucker M G, Hull S, Francis D J, Marshall W G 2016 High Pressure Res. 36 493Google Scholar

    [9]

    Calder S, An K, Boehler R, Dela Cruz C R, Frontzek M D, Guthrie M, Haberl B, Huq A, Kimber S A J, Liu J, Molaison J J, Neuefeind J, Page K, Santos A M, Taddei K M, Tulk C, Tucker M G 2018 Rev. Sci. Instrum. 89 092701Google Scholar

    [10]

    史钰, 陈喜平, 谢雷, 孙光爱, 房雷鸣 2019 68 116101Google Scholar

    Shi Y, Chen X P, Xie L, Sun G A, Fang L M 2019 Acta Phys. Sin. 68 116101Google Scholar

    [11]

    Klotz S, Besson J M, Hamel G, Nelmes R J, Loveday J S, Marshalla W G, Wilson R M 1995 Appl. Phys. 66 1735Google Scholar

    [12]

    Guthrie M, Boehler R, Tulk C A, Molaison J J, Santos A M, Li K, Hemley R J 2013 Proc. Natl. Acad. Sci. U.S.A. 110 10552Google Scholar

    [13]

    Boehler R, Guthrie M, Molaison J J, Santos A M, Sinogeikin S, Machida S, Pradhan N, Tulkn C A 2013 High Pressure Res. 33 546Google Scholar

    [14]

    Hattori T, Sano-Furukawa A, Machida S, Abe J, Funakoshi K, Arima H, Okazaki N 2019 High Pressure Res. 39 417Google Scholar

    [15]

    Hu Q, Fang L, Li Q, Li X, Chen X, Xie L, Zhang J, Liu F, Lei L, Sun G, He D 2019 High Pressure Res. 39 655Google Scholar

    [16]

    Zhao Y, Robert B, Dreele V, Jiaming, Morgan G 1999 High Pressure Res. 16 161Google Scholar

    [17]

    Zhang J, Zhao Y, Wang Y, Daemen L 2008 J. Appl. Phys. 103 093513Google Scholar

    [18]

    He D, Zhao Y, Daemen L L, Qian J, Lokshin K, Shen T D, Zhang J, Lawson A C 2004 J. Appl. Phys. 95 4645Google Scholar

    [19]

    Klotz S, Godec Y Le, Strässle T, Stuhr U 2008 Appl. Phys. Lett. 93 091904Google Scholar

    [20]

    江明全, 李欣, 房雷鸣, 谢雷, 陈喜平, 胡启威, 李强, 李青泽, 陈波, 贺端威 2020 69 226101Google Scholar

    Jiang M Q, Li X, Fang L M, Xie L, Chen X P, Hu Q W, Li Q, Li Q Z, Chen B, He D W 2020 Acta Phys. Sin. 69 226101Google Scholar

    [21]

    房雷鸣, 陈喜平, 谢雷, 贺端威, 胡启威, 李欣, 江明全, 孙光爱, 陈波, 彭述明, 李昊, 韩铁鑫 2020 高压 34 15705Google Scholar

    Fang L M, Chen X P, Xie L, He D W, Hu Q W, Li X, Jiang M Q, Sun G A, Chen B, Peng S M, Li H, Han T X 2020 Chin. J. High Pressure Phys. 34 15705Google Scholar

    [22]

    Godec Y L, Dove M T, Redfern S, Tucker M G, Marshall W G, Syfosse G, Besson J M 2001 High Pressure Res. 21 263Google Scholar

    [23]

    Rodríguez-Carvajal J, Roisnel T 2004 Mater. Sci. Forum 443–444 123Google Scholar

    [24]

    Martíinez D, Le G Y, Mézouar M, Syfosse G, Itié J P, Besson J M 2000 High Pressure Res. 18 339Google Scholar

    [25]

    Li B, Woody K, Kung J 2006 J. Geophys. Res. Solid Earth 111 11206Google Scholar

    [26]

    Tange Y, Nishihara Y, Tsuchiya T 2009 J. Geophys. Res. 114 03208Google Scholar

  • 图 1  中子衍射高温高压组装 (a)文献[16, 17]组装, 其中 1铝环, 2聚四氟乙烯环, 3 铝合金封垫, 4磷酸锆, 5电极, 6样品, 7不锈钢锥体, 8热电偶, 9石墨加热管, 10绝缘环; (b)文献[19]组装, 其中1铍铜合金封垫, 2绝缘环, 3 叶腊石, 4电极, 5氧化镁, 6样品, 7钽箔, 8石墨加热管; (c)文献[20, 21]组装, 其中1钛锆合金封垫, 2绝缘环, 3氧化锆, 4电极, 5铼箔, 6样品, 7石墨加热管

    Fig. 1.  Schematic illustrations of high-temperature and high-pressure cell assembly for neutron diffraction. (a) Cell assembly in Ref. [16, 17]. 1 Al ring, 2 teflon ring, 3 alloy steel gasket, 4 zirconium phosphate, 5 electrode, 6 sample, 7 stainless steel cone, 8 thermocouple, 9 carbon furnace, 10 insulating ring. (b) Cell assembly in Ref. [19]. 1 CuBe gasket, 2 insulating ring, 3 pyrophyllite, 4 electrode, 5 MgO, 6 sample, 7 Ta foil, 8 carbon furnace; (c) Cell assembly in Ref. [20, 21]. 1 TiZr gasket, 2 insulating ring, 3 ZrO2, 4 electrode, 5 Re foil, 6 sample, 7 carbon furnace.

    图 2  (a) 高温高压组装示意图; (b) 高温高压组装各组装件实物图. 1 封垫, 2 叶腊石绝缘层, 3氧化锆, 4石墨加热管, 5绝缘管, 6样品, 7电极, 8热电偶

    Fig. 2.  (a) Schematic diagram of high-temperature and high-pressure cell assembly; (b) photograph of the assembly parts. 1 gasket, 2 pyrophyllite insulating ring, 3 ZrO2, 4 carbon furnace, 5 electrical insulation sleeve, 6 sample, 7 electrode, 8 thermocouple.

    图 3  (a)锯齿形状引线及(b)扇形铜箔引线的示意图

    Fig. 3.  Schematic diagram of (a) jagged and (b) Cu foil thermocouple’s leads.

    图 4  HPT-3.5和HPT-3.5组装在5 GPa压力下的温度与功率对应曲线

    Fig. 4.  Temperature versus electrical-power relationship in HPT-3.5 and HPT-3 at 5 GPa.

    图 5  HPT-3.5组装内部不同位置和压砧边缘的温度测量

    Fig. 5.  Temperatures at different places of HPT-3.5 assembly and the edge of anvils.

    图 6  相同功率加载下温度随压力的变化关系

    Fig. 6.  Pressure dependences of temperature with the power fixed at 210 W.

    图 7  高温高压下原位中子衍射实验谱图

    Fig. 7.  Diffraction pattern of MgO at high-temperature and high-pressure.

    Baidu
  • [1]

    Bundy F P 1963 J. Chem. Phys. 38 631Google Scholar

    [2]

    Corrign F R, Bundy F P 1975 J. Chem. Phys. 63 3812Google Scholar

    [3]

    Snider E, Dasenbrock-Gammon N, McBride1 R, Debessai M, Vindana H, Vencatasamy K, Lawler K V, Salamat A, Dias R P 2020 Nature 586 373Google Scholar

    [4]

    Zeng Q, Sheng H, Ding Y, Wang L, Yang W, Jiang J Z, Mao W L, Mao H K 2011 Science 332 1404Google Scholar

    [5]

    Besson J M, Nelmes R J, Hamel G, Loveday J S, Weill G, Hull S 1992 Physica B 180 907Google Scholar

    [6]

    Utsumi W, Kagi H, Komatsu K, Arima H, Nagai T, Okuchi T, Kamiyama T, Uwatoko Y, Matsubayashi K, Yagi T 2009 Nucl. Instrum. Methods A 600 50Google Scholar

    [7]

    Zhao Y S, Zhang J Z, Xu H W, Lokshin K A, He D W, Qian J, Pantea C, Daemen L L, Vogel S C, Ding Y, Xu J 2010 Appl. Phys. A 99 585Google Scholar

    [8]

    Bull C L, Funnell N P, Tucker M G, Hull S, Francis D J, Marshall W G 2016 High Pressure Res. 36 493Google Scholar

    [9]

    Calder S, An K, Boehler R, Dela Cruz C R, Frontzek M D, Guthrie M, Haberl B, Huq A, Kimber S A J, Liu J, Molaison J J, Neuefeind J, Page K, Santos A M, Taddei K M, Tulk C, Tucker M G 2018 Rev. Sci. Instrum. 89 092701Google Scholar

    [10]

    史钰, 陈喜平, 谢雷, 孙光爱, 房雷鸣 2019 68 116101Google Scholar

    Shi Y, Chen X P, Xie L, Sun G A, Fang L M 2019 Acta Phys. Sin. 68 116101Google Scholar

    [11]

    Klotz S, Besson J M, Hamel G, Nelmes R J, Loveday J S, Marshalla W G, Wilson R M 1995 Appl. Phys. 66 1735Google Scholar

    [12]

    Guthrie M, Boehler R, Tulk C A, Molaison J J, Santos A M, Li K, Hemley R J 2013 Proc. Natl. Acad. Sci. U.S.A. 110 10552Google Scholar

    [13]

    Boehler R, Guthrie M, Molaison J J, Santos A M, Sinogeikin S, Machida S, Pradhan N, Tulkn C A 2013 High Pressure Res. 33 546Google Scholar

    [14]

    Hattori T, Sano-Furukawa A, Machida S, Abe J, Funakoshi K, Arima H, Okazaki N 2019 High Pressure Res. 39 417Google Scholar

    [15]

    Hu Q, Fang L, Li Q, Li X, Chen X, Xie L, Zhang J, Liu F, Lei L, Sun G, He D 2019 High Pressure Res. 39 655Google Scholar

    [16]

    Zhao Y, Robert B, Dreele V, Jiaming, Morgan G 1999 High Pressure Res. 16 161Google Scholar

    [17]

    Zhang J, Zhao Y, Wang Y, Daemen L 2008 J. Appl. Phys. 103 093513Google Scholar

    [18]

    He D, Zhao Y, Daemen L L, Qian J, Lokshin K, Shen T D, Zhang J, Lawson A C 2004 J. Appl. Phys. 95 4645Google Scholar

    [19]

    Klotz S, Godec Y Le, Strässle T, Stuhr U 2008 Appl. Phys. Lett. 93 091904Google Scholar

    [20]

    江明全, 李欣, 房雷鸣, 谢雷, 陈喜平, 胡启威, 李强, 李青泽, 陈波, 贺端威 2020 69 226101Google Scholar

    Jiang M Q, Li X, Fang L M, Xie L, Chen X P, Hu Q W, Li Q, Li Q Z, Chen B, He D W 2020 Acta Phys. Sin. 69 226101Google Scholar

    [21]

    房雷鸣, 陈喜平, 谢雷, 贺端威, 胡启威, 李欣, 江明全, 孙光爱, 陈波, 彭述明, 李昊, 韩铁鑫 2020 高压 34 15705Google Scholar

    Fang L M, Chen X P, Xie L, He D W, Hu Q W, Li X, Jiang M Q, Sun G A, Chen B, Peng S M, Li H, Han T X 2020 Chin. J. High Pressure Phys. 34 15705Google Scholar

    [22]

    Godec Y L, Dove M T, Redfern S, Tucker M G, Marshall W G, Syfosse G, Besson J M 2001 High Pressure Res. 21 263Google Scholar

    [23]

    Rodríguez-Carvajal J, Roisnel T 2004 Mater. Sci. Forum 443–444 123Google Scholar

    [24]

    Martíinez D, Le G Y, Mézouar M, Syfosse G, Itié J P, Besson J M 2000 High Pressure Res. 18 339Google Scholar

    [25]

    Li B, Woody K, Kung J 2006 J. Geophys. Res. Solid Earth 111 11206Google Scholar

    [26]

    Tange Y, Nishihara Y, Tsuchiya T 2009 J. Geophys. Res. 114 03208Google Scholar

  • [1] 肖宏宇, 李勇, 鲍志刚, 佘彦超, 王应, 李尚升. 触媒组分对高温高压金刚石大单晶生长及裂纹缺陷的影响.  , 2023, 72(2): 020701. doi: 10.7498/aps.72.20221841
    [2] 田春玲, 刘海燕, 王彪, 刘福生, 甘云丹. 稠密流体氮高温高压相变及物态方程.  , 2022, 71(15): 158701. doi: 10.7498/aps.71.20220124
    [3] 尤悦, 李尚升, 宿太超, 胡美华, 胡强, 王君卓, 高广进, 郭明明, 聂媛. 高温高压下金刚石大单晶研究进展.  , 2020, 69(23): 238101. doi: 10.7498/aps.69.20200692
    [4] 江明全, 李欣, 房雷鸣, 谢雷, 陈喜平, 胡启威, 李强, 李青泽, 陈波, 贺端威. 基于PE型压机中子衍射高温高压组装的优化设计与实验验证.  , 2020, 69(22): 226101. doi: 10.7498/aps.69.20200832
    [5] 张步强, 许振宇, 刘建国, 姚路, 阮俊, 胡佳屹, 夏晖晖, 聂伟, 袁峰, 阚瑞峰. 基于波长调制技术的高温高压流场温度测量方法.  , 2019, 68(23): 233301. doi: 10.7498/aps.68.20190515
    [6] 史钰, 陈喜平, 谢雷, 孙光爱, 房雷鸣. 基于巴黎-爱丁堡压机的高压中子衍射技术.  , 2019, 68(11): 116101. doi: 10.7498/aps.68.20190179
    [7] 李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安. 硼氢协同掺杂Ib型金刚石大单晶的高温高压合成与电学性能研究.  , 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [8] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安. 高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响.  , 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [9] 蒋建军, 李和平, 代立东, 胡海英, 赵超帅. 基于拉曼频移的白宝石压腔无压标系统高温高压实验标定.  , 2015, 64(14): 149101. doi: 10.7498/aps.64.149101
    [10] 张嵩波, 王方标, 李发铭, 温戈辉. 高温高压方法合成碳包覆-Fe2O3纳米棒及其磁学性能.  , 2014, 63(10): 108101. doi: 10.7498/aps.63.108101
    [11] 肖宏宇, 李尚升, 秦玉琨, 梁中翥, 张永胜, 张东梅, 张义顺. 高温高压下掺硼宝石级金刚石单晶生长特性的研究.  , 2014, 63(19): 198101. doi: 10.7498/aps.63.198101
    [12] 卢志文, 仲志国, 刘克涛, 宋海珍, 李根全. 高温高压下Ag-Mg-Zn合金中金属间化合物的微观结构与热动力学性质的第一性原理计算.  , 2013, 62(1): 016106. doi: 10.7498/aps.62.016106
    [13] 黎军军, 赵学坪, 陶强, 黄晓庆, 朱品文, 崔田, 王欣. 二硼化钛的高温高压制备及其物性.  , 2013, 62(2): 026202. doi: 10.7498/aps.62.026202
    [14] 孙光爱, 王虹, 汪小琳, 陈波, 常丽丽, 刘耀光, 盛六四, Woo W, Kang MY. 原位中子衍射研究两相NiTi合金的微力学相互作用和相变机理.  , 2012, 61(22): 226102. doi: 10.7498/aps.61.226102
    [15] 赵艳红, 刘海风, 张弓木, 张广财. 高温高压下爆轰产物分子间相互作用的研究.  , 2011, 60(12): 123401. doi: 10.7498/aps.60.123401
    [16] 孙光爱, 陈波, 吴二冬, 李武会, 张功, 汪小琳, V. Ji, T. Pirling, D. Hughes. 中子衍射分析时效处理对镍基单晶高温合金相结构的影响.  , 2011, 60(8): 086102. doi: 10.7498/aps.60.086102
    [17] 秦杰明, 王皓, 曾繁明, 李建利, 万玉春, 刘景和. 高温高压下MgxZn1-xO固溶体的制备.  , 2010, 59(12): 8910-8914. doi: 10.7498/aps.59.8910
    [18] 刘晓静, 张佰军, 李海波, 刘兵, 张春丽, 郭义庆, 张丙新. 应用量子理论方法研究中子双缝衍射.  , 2010, 59(6): 4117-4122. doi: 10.7498/aps.59.4117
    [19] 孙光爱, Darren Hughes, Thilo Pirling, Vincent Ji, 陈波, 陈华, 吴二冬, 张俊. 中子衍射法研究单晶镍基高温合金热机械疲劳引起的应力和晶格错配.  , 2009, 58(4): 2549-2555. doi: 10.7498/aps.58.2549
    [20] 孙小伟, 褚衍东, 刘子江, 刘玉孝, 王成伟, 刘维民. 高温高压下闪锌矿相GaN结构和热力学特性的分子动力学研究.  , 2005, 54(12): 5830-5836. doi: 10.7498/aps.54.5830
计量
  • 文章访问数:  4416
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-08
  • 修回日期:  2022-04-08
  • 上网日期:  2022-07-22
  • 刊出日期:  2022-08-05

/

返回文章
返回
Baidu
map