-
Gem anvil cell is on important tool in high pressure experimental research, and the key of its application is the accurate calibration of the pressure in sample chamber. To date, the pressure has been routinely calibrated by the extra gauge such as ruby. This may increase the difficulty in building a setup and changing the chemical environment, even chemical reaction happens with the sample, thereby degrading the experimental results. In this study, using the synthesized pale sapphire and the heatable Zha-Bassett type cell, the relationships between Raman shift of sapphire-anvil interface and the pressure, and also temperature in chamber are investigated by the confocal Raman microscope at 0-6.3 GPa and 300-573 K, which is used to establish a non-gauge sapphire anvil cell system. The result shows that the pressure induced Raman shift of sapphire anvil at room temperature is 1.6443 cm-1/GPa and the temperature induced shift at room pressure is -0.0198 cm-1/K. We fit the experimental data at simultaneous high temperature and high pressure (HTHP) and find that: ∂ν12/∂T=-0.01913-0.00105×P, ∂ν12/∂P=1.9158-0.00105×T. The effect between the pressure and temperature can be described by ∂ν12/∂P∂T=-0.00105. After this calibration: P=(Δλ-0.01913×ΔT)/(1.9158-0.00105×ΔT), the pressure in the sample chamber can be calculated by the Raman shift of the interface of anvil cell in the HTHP experiment, which can be directly used in hydro-thermal reaction system and has great importance in physics, material science and geoscience.
-
Keywords:
- sapphire anvil cell /
- pressure calibration /
- Raman shift /
- high temperature and high pressure
[1] Bassett W 2009 High Pressure Res. 29 163
[2] Hu J Z, Tang R M, Xu J A 2005 Acta Phys. Sin. 29 1351 (in Chinese) [胡静竹, 唐汝明, 徐济安 2005 29 1351]
[3] Piermarini G 2008 Static Compression of Energetic Materials (Berlin: Springer) p7
[4] Decker D L, Bassett W A, Merrill L, Hall H T, Barnett J D 1972 J. Phys. Chem. Ref. Data 1 773
[5] Syassen K 2008 High Pressure Res. 28 75
[6] Gao R, Li H P 2012 High Pressure Res. 32 176
[7] Baonza V G, Taravillo M, Arencibia A, Caceres M, Nν12úñez J 2003 J. Raman Spectrosc. 34 264
[8] Qu Q M, Zheng H F 2007 Chin. J. High Pressure Phys. 21 332 (in Chinese) [瞿清明, 郑海飞 2007 高压 21 332]
[9] Fu Z Y, Liang P, Dong Q M, Shu H B, Xing S, Shen T, Tai B 2015 Acta Phys. Sin. 64 016102 (in Chinese) [傅重源, 梁培, 董前民, 舒海波, 邢淞, 沈涛, 邰博 2015 64 016102]
[10] Zhang R, Hu S 2004 The J. Supercrit. Fluid 29 185
[11] Yuan R L, Shi E W, Xia C T, Wang B G, Zhong W Z 1996 Acta Phys. Sin. 45 2082 (in Chinese) [元如林, 施尔畏, 夏长泰, 王步国, 仲维卓 1996 45 2082]
[12] Zheng H F 2014 Experimental Techniques of DAC for High Temperature and Pressure Studies and Its Applications (Beijing: Science Press) p172 (in Chinese) [郑海飞 2014 金刚石压腔高温高压实验技术及其应用 (北京: 科学出版社) 第172页]
[13] Richet P, Gillet P, Pierre A, Bouhifd M A, Daniel I, Fiquet G 1993 J. Appl. Phys. 74 5451
[14] Xu J A, Huang E, Lin J F, Xu L Y 1995 Am. Mineral. 80 1157
[15] Zha C S, Krasnicki S, Meng Y F, Yan C S, Lai J, Liang Q, Mao H K, Hemley R J 2009 High Pressure Res. 29 317
[16] Klotz S, Chervin J C, Munsch P, Le Marchand G 2009 J. Phys. D: Appl. Phys. 42 075413
[17] Mao H K, Xu J A, Bell P 1986 J. Geophys. Res. 91 4673
[18] Iishi K 1978 Phys. Chem. Miner. 3 1
[19] Porto S, Krishnan R 1967 J. Chem. Phys. 47 1009
[20] Noguchi N, Abduriyim A, Shimizu I, Kamegata N, Odake S, Kagi H 2013 J. Raman. Spectrosc. 44 147
[21] Schmidt C, Steele-MacInnis M, Watenphul A, Wilke M 2013 Am. Mineral. 98 6431
[22] Datchi F, Dewaele A, Loubeyre P, Letoullec R, Le Godec Y, Canny B 2007 High Pressure Res. 27 447
-
[1] Bassett W 2009 High Pressure Res. 29 163
[2] Hu J Z, Tang R M, Xu J A 2005 Acta Phys. Sin. 29 1351 (in Chinese) [胡静竹, 唐汝明, 徐济安 2005 29 1351]
[3] Piermarini G 2008 Static Compression of Energetic Materials (Berlin: Springer) p7
[4] Decker D L, Bassett W A, Merrill L, Hall H T, Barnett J D 1972 J. Phys. Chem. Ref. Data 1 773
[5] Syassen K 2008 High Pressure Res. 28 75
[6] Gao R, Li H P 2012 High Pressure Res. 32 176
[7] Baonza V G, Taravillo M, Arencibia A, Caceres M, Nν12úñez J 2003 J. Raman Spectrosc. 34 264
[8] Qu Q M, Zheng H F 2007 Chin. J. High Pressure Phys. 21 332 (in Chinese) [瞿清明, 郑海飞 2007 高压 21 332]
[9] Fu Z Y, Liang P, Dong Q M, Shu H B, Xing S, Shen T, Tai B 2015 Acta Phys. Sin. 64 016102 (in Chinese) [傅重源, 梁培, 董前民, 舒海波, 邢淞, 沈涛, 邰博 2015 64 016102]
[10] Zhang R, Hu S 2004 The J. Supercrit. Fluid 29 185
[11] Yuan R L, Shi E W, Xia C T, Wang B G, Zhong W Z 1996 Acta Phys. Sin. 45 2082 (in Chinese) [元如林, 施尔畏, 夏长泰, 王步国, 仲维卓 1996 45 2082]
[12] Zheng H F 2014 Experimental Techniques of DAC for High Temperature and Pressure Studies and Its Applications (Beijing: Science Press) p172 (in Chinese) [郑海飞 2014 金刚石压腔高温高压实验技术及其应用 (北京: 科学出版社) 第172页]
[13] Richet P, Gillet P, Pierre A, Bouhifd M A, Daniel I, Fiquet G 1993 J. Appl. Phys. 74 5451
[14] Xu J A, Huang E, Lin J F, Xu L Y 1995 Am. Mineral. 80 1157
[15] Zha C S, Krasnicki S, Meng Y F, Yan C S, Lai J, Liang Q, Mao H K, Hemley R J 2009 High Pressure Res. 29 317
[16] Klotz S, Chervin J C, Munsch P, Le Marchand G 2009 J. Phys. D: Appl. Phys. 42 075413
[17] Mao H K, Xu J A, Bell P 1986 J. Geophys. Res. 91 4673
[18] Iishi K 1978 Phys. Chem. Miner. 3 1
[19] Porto S, Krishnan R 1967 J. Chem. Phys. 47 1009
[20] Noguchi N, Abduriyim A, Shimizu I, Kamegata N, Odake S, Kagi H 2013 J. Raman. Spectrosc. 44 147
[21] Schmidt C, Steele-MacInnis M, Watenphul A, Wilke M 2013 Am. Mineral. 98 6431
[22] Datchi F, Dewaele A, Loubeyre P, Letoullec R, Le Godec Y, Canny B 2007 High Pressure Res. 27 447
Catalog
Metrics
- Abstract views: 6812
- PDF Downloads: 215
- Cited By: 0