-
本文利用六面顶压机,在5.8GPa、1300℃的高温高压条件下,以Fe59Ni25Co16合金作为触媒,系统开展了Li3N添加金刚石单晶的生长研究.首先,考察了Li3N添加比例对金刚石单晶生长的影响.研究结果表明,随着Li3N添加比例的逐渐增加,金刚石单晶的颜色逐渐由黄绿色、绿色、深绿色向墨绿色过渡,其形貌逐渐由六面体、六八面体向八面体过渡,且单晶的生长速度随Li3N添加比例的增加而减小.其次,借助傅里叶红外(FTIR)光谱测试,揭示了金刚石单晶的氮含量随着Li3N添加比例的增加而增大,并验证了提高金刚石生长压力可实现对金刚石单晶氮含量的提升.再次,结合拉曼(Raman)光谱测试,阐述了金刚石单晶的拉曼特征峰随着Li3N添加比例的增加而逐渐向低能端移动,这与金刚石单晶的内应力随晶体内氮含量的增加而增大有关.最后,通过PL光谱测试,验证了本研究实现了具有NV-色心金刚石单晶的高温高压制备.另外,PL光谱测试结果同时表明,当金刚石中的氮含量不低于493 ppm时,晶体内部NV-色心的零声子线强度会随着晶体氮含量的增加而显著降低.In the paper, under 5.8 GPa and 1300℃, the Li3N doped diamond single crystals were synthesized in a cubic anvil high pressure and high temperature apparatus. Firstly, Fe59Ni25Co16 alloy was used as the catalyst, high-purity Li3N powder was used as the additive, industrial high-purity graphite powder was used as the carbon source, and the (100) crystal orientation of industrial grade diamond single crystal with good crystalline quality was used as the growth direction of diamond single crystal, the effect of Li3N addition ratio on the growth of diamond single crystals was systematically investigated with a growth time of 20 hours. The research results indicate that with the increase of Li3N addition ratio, the color of diamond single crystals gradually transitions from yellow green, green, and dark green to dark green, and their morphology gradually transitions from hexahedron, hexahedron to octahedron. Moreover, the growth rate of single crystals decreases with the gradual increase of Li3N addition ratio, which can be attributed to the phenomenon of upward movement in the “V-shaped region” of diamond single crystal growth with the gradual increase of Li3N addition ratio in the P-T phase diagram of carbon. Secondly, using Fourier transform infrared (FTIR) spectroscopy, it was revealed that the nitrogen content of diamond single crystals increases with the increase of Li3N addition ratio, and increasing the diamond growth pressure can achieve the increase in the nitrogen content of diamond single crystals. Fig. 5 shows FTIR spectra of diamond crystals synthesized under different Li3N addition ratios. When the amount of Li3N added to the catalyst is 0.55 wt.%, the nitrogen content of the grown diamond single crystal is 892 ppm. Thirdly, Raman spectroscopy testing revealed that the Raman characteristic peak of diamond single crystals gradually shifts towards the low-energy end with the increase of Li3N addition ratio, which is related to the increase of internal stress in diamond single crystals. Finally, the PL spectroscopy test results showed that this study achieved high temperature and high pressure preparation of diamond single crystals with NV- color centers, and the zero phonon line intensity of NV- color centers in the single crystals significantly decreased with the increase of crystal nitrogen content. Fig. 7 shows PL spectra of diamond crystals synthesized under different Li3N addition ratios.
-
Keywords:
- high temperature and high pressure /
- diamond single crystals /
- catalyst /
- Li3N
-
[1] Bovenkerk H P, Bundy F P, Hall H T, Strong H M, Wentorf Jr R H 1959Nature 184 1094
[2] Li Y, Liao J H, Wang Y, She Y C, Xiao Z G, An J 2020Opt. Mater. 101 109735
[3] Ma Y M, Eremets M, Oganov A R, Xie Y, Trojan, Medvedev S 2009Nature 458 182
[4] Liu X B, Chen X, Singh D J, Stern R A,Wu J S, Petitgirard S, Bina C R, Jacobsen S D 2019Proc. Natl. Acad. Sci. Unit. States Am. 116 7703
[5] Li Y, Chen X Z, Ran M W, She Y C, Xiao Z G, Hu M H, Wang Y, An J 2022Chin. Phys. B 31 046107
[6] Borzdov Y, Pal’yanov Y, Kupriyanov I, Gusev V, Khokhryakov A, Sokol A, Efremov A 2002Diam. Relat. Mater. 11 1863
[7] Ralchenko V, Sedov V, Martyanov A, Voronov V, Savin S, Khomich A 2022Carbon 190, 10
[8] Xiao H Y, Qin Y K, Liu L N, Bao Z G, Tang C J, Sun R R, Zhang Y S, Li S S, Jia X P 2018Acta Phys. Sin. 67 140702(in Chinese) [ 肖宏宇,秦玉琨,刘利娜,鲍志刚,唐春娟,孙瑞瑞,张永胜,李尚升,贾晓鹏2018 67 140702]
[9] Xiao H Y, Li Y, Bao Z G, She Y C, Wang Y, Li S S 2023Acta Phys. Sin. 72 020701(in Chinese) [ 肖宏宇,李勇,鲍志刚,佘彦超,王应,李尚升2023 72 020701]
[10] Li Y, Wang S, Xiao H Y, Wang Q, Xiao Z G, She Y C, Wang Y 2024Cryst. Eng. Comm. 26 2190
[11] Yelisseyev A P, Zhimulev E I, Karpovich Z A, Chepurov A A, Sonin V M, Chepurov A I 2022Cryst. Eng. Comm. 24 4408
[12] Razgulov A A, Lyapin S G, Novikov A P, Ekimov E A 2021Diam. Relat. Mater. 116 108379
[13] Bogdanov K V, Zhukovskaya M V, Osipov V Y, Ushakova E V, Baranov M A, Takai K, Rampersaud A, Baranov A V 2018APL Mater. 6 086104
[14] Li M, Wang Z W, Teng Y, Zhao H Y, Li B W, Liu Y, Wang S X, Yang Z Z, Chen L C, Ma H A, Jia X P 2024Diam. Relat. Mater. 141 110605
[15] Wang W H, Fang C, Chen L C, Zhang Z F, Zhang Y W, Wang Q Q, Biao W, Yang X, Ren W, Jia X P 2024Diam. Relat. Mater. 142 110863
[16] Liu Y, Wang Z W, Teng Y, Li B W, Zhao H Y, Guo Q Y, Chen L C, Ma H A, Jia X P 2023Intern. J. Refra. Metal. Hard Mater. 118 106488
[17] Nie Y, Li S S, Hu Q, Wang J Z, Hu M H, Su T C, Huang G F, Li Z C, Li Y, Xiao H Y 2023Optic. Mater. 137 113538
[18] Catledge S A, Vohra Y K, Ladi R, Rai G 1996Diam. Relat. Mater. 5 1159
[19] Xiao H Y, Li Y, Tian C H, Zhang W X, Wang Q, Xiao Z G, Wang Y, Jin H, Bao Z G, Zhou Z X. 2024J. Synth. Cryst. 53 959(in Chinese) [ 肖宏宇,李勇,田昌海,张蔚曦,王强,肖政国,王应,金慧,鲍志刚,周振翔2024人工晶体学报53 959]
[20] Capelli M, Heffernan A H, Ohshim T, Abe H, Jeske J, Hope A, Greentree A D, Reineck P, Gibson B C 2019Carbon 143 714
[21] Sedova V, Martyanov A, Savin S, Bolshakov A, Bushuev E, Khomich A, Kudryavtsev O, Krivobok V, Nikolaev S, Ralchenko V 2018Diam. Relat. Mater. 90 47
[22] Glinka Y D, Lin K W, Chang H C, Lin S H 1999J. Phys. Chem. B 103 4251
[23] Moussa J E, Marom N, Sai N, Chelikowsky J R 2012Physic. Rev. Letter. 108 226404
计量
- 文章访问数: 134
- PDF下载量: 4
- 被引次数: 0