搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Li3N添加金刚石单晶的高温高压生长研究

肖宏宇 王帅 康如威 李勇 李尚升 田昌海 王强 金慧 马红安

引用本文:
Citation:

Li3N添加金刚石单晶的高温高压生长研究

肖宏宇, 王帅, 康如威, 李勇, 李尚升, 田昌海, 王强, 金慧, 马红安

Study on the growth of Li3N doped diamond single crystals under HPHT

XIAO Hongyu, WANG Shuai, KANG Ruwei, LI Yong, LI Shangsheng, TIAN Changhai, WANG Qiang, JIN Hui, MA Hongan
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 利用六面顶压机, 在5.8 GPa, 1300 ℃的高温高压条件下, 以Fe59Ni25Co16合金作为触媒, 系统地开展了Li3N添加金刚石单晶的生长研究. 首先, 考察了Li3N添加比例对金刚石单晶生长的影响. 研究结果表明, 随着Li3N添加比例的逐渐增加, 金刚石单晶的颜色逐渐由黄绿色、绿色、深绿色向墨绿色过渡, 其形貌逐渐由六面体、六八面体向八面体过渡, 且单晶的生长速度随Li3N添加比例的增加而减小. 其次, 借助傅里叶红外(FTIR)光谱测试, 揭示了金刚石单晶的氮含量随着Li3N添加比例的增加而增大, 并验证了提高金刚石生长压力可实现对金刚石单晶氮含量的提升. 再次, 结合拉曼(Raman)光谱测试, 阐述了金刚石单晶的拉曼特征峰随着Li3N添加比例的增加而逐渐向低能端移动, 这与金刚石单晶的内应力随晶体内氮含量的增加而增大有关. 最后, 通过光致发光光谱(PL)测试, 验证了本研究实现了具有NV色心金刚石单晶的高温高压制备. 另外, PL光谱测试结果同时表明, 当金刚石中的氮含量不低于4.93×10–4时, 晶体内部NV色心的零声子线强度会随着晶体氮含量的增加而显著降低.
    In the paper, under 5.8 GPa and 1300 ℃, the Li3N doped diamond single crystals were synthesized in a cubic anvil high pressure and high temperature apparatus. Firstly, Fe59Ni25Co16 alloy was used as the catalyst, high-purity Li3N powder was used as the additive, industrial high-purity graphite powder was used as the carbon source, and the (100) crystal orientation of industrial grade diamond single crystal with good crystalline quality was used as the growth direction of diamond single crystal, the effect of Li3N addition ratio on the growth of diamond single crystals was systematically investigated with a growth time of 20 h. The research results indicate that with the increase of Li3N addition ratio, the color of diamond single crystals gradually transitions from yellow green, green, and dark green to dark green, and their morphology gradually transitions from hexahedron, hexahedron to octahedron. Moreover, the growth rate of single crystals decreases with the gradual increase of Li3N addition ratio, which can be attributed to the phenomenon of upward movement in the “V-shaped region” of diamond single crystal growth with the gradual increase of Li3N addition ratio in the P-T phase diagram of carbon. Secondly, using Fourier transform infrared (FTIR) spectroscopy, it was revealed that the nitrogen content of diamond single crystals increases with the increase of Li3N addition ratio, and increasing the diamond growth pressure can achieve the increase in the nitrogen content of diamond single crystals. Fig. 5 shows FTIR spectra of diamond crystals synthesized under different Li3N addition ratios. When the weight percent of Li3N added to the catalyst is 0.55%, the nitrogen content of the grown diamond single crystal is 8.92×10–4. Thirdly, Raman spectroscopy testing revealed that the Raman characteristic peak of diamond single crystals gradually shifts towards the low-energy end with the increase of Li3N addition ratio, which is related to the increase of internal stress in diamond single crystals. Finally, the PL spectroscopy test results showed that this study achieved high temperature and high pressure preparation of diamond single crystals with NV color centers, and the zero phonon line intensity of NV color centers in the single crystals significantly decreased with the increase of crystal nitrogen content. Fig. 7 shows PL spectra of diamond crystals synthesized under different Li3N addition ratios.
  • 图 1  金刚石单晶的生长组装示意图. ①叶蜡石块; ②白云石衬管; ③触媒合金; ④金刚石单晶; ⑤导电钢帽; ⑥石墨加热管; ⑦碳素源; ⑧晶体生长容器; ⑨晶种; ⑩导电紫铜片

    Fig. 1.  Sample assembly to treat synthesis diamond single crystals. ① Synthetic block of pyrophyllite; ② dolomite lining tube; ③ catalyst alloy; ④ diamond single crystal; ⑤ conductive steel cap; ⑥ graphite heating tube; ⑦ carbon source; ⑧ crystal growth container; ⑨ seed crystals; ⑩ conductive copper sheet.

    图 2  5.8 GPa下不同Li3N添加质量含量金刚石单晶的光学显微照片 (a) 0.25% Li3N; (b) 0.35% Li3N; (c) 0.45% Li3N; (d) 0.55% Li3N

    Fig. 2.  Optical micrographs of diamond single crystals with different weight percent Li3N addition ratios under 5.8 GPa: (a) 0.25% Li3N; (b) 0.35% Li3N; (c) 0.45% Li3N; (d) 0.55% Li3N.

    图 3  Li3N添加金刚石单晶生长“V形区”上移示意图. (a)低Li3N添加的“V形区”; (b)高Li3N添加的“V形区”

    Fig. 3.  Schematic diagram of the upward movement of the “V-shaped region” with Li3N doped diamond growth. (a) V-shaped region with low Li3N addition; (b) V-shaped region with high Li3N addition

    图 4  不同压力及Li3N添加比例下生长金刚石单晶的光学显微照片 (a)5.8 GPa, 0.60%; (b) 5.6 GPa, 0.07%; (c) 5.6 GPa, 0.08%

    Fig. 4.  Optical micrographs of diamond single crystals grown under different pressures and Li3N addition ratios: (a) Under 5.8 GPa, for 0.60% Li3N; (b) under 5.6 GPa, for 0.07% Li3N; (c) under 5.6 GPa, for 0.08% Li3N.

    图 5  不同Li3N添加比例金刚石单晶的微区红外光谱 (a) S6; (b) S1; (c) S2; (d) S3; (e) S4

    Fig. 5.  FTIR spectra of diamond crystals synthesized under different Li3N addition ratios: (a) S6; (b) S1; (c) S2; (d) S3; (e) S4.

    图 6  不同Li3N添加比例金刚石单晶的Raman光谱测试结果 (a) S1; (b) S2; (c) S3; (d) S4

    Fig. 6.  Raman spectra of diamond crystals synthesized under different Li3N addition ratios: (a) S1; (b) S2; (c) S3; (d) S4.

    图 7  不同Li3N添加比例金刚石单晶的PL光谱 (a) S1; (b) S2; (c) S3; (d) S4

    Fig. 7.  PL spectra of diamond crystals synthesized under different Li3N addition ratios: (a) S1; (b) S2; (c) S3; (d) S4.

    表 1  Li3N添加金刚石单晶的生长条件及晶体品质特征

    Table 1.  Growth conditions and crystal quality of Li3N doped diamond single crystals.

    样品压力
    /GPa
    温度
    /℃
    Li3N添加比例
    /%
    生长速度
    /(mg·h–1)
    晶体品质
    S15.813000.251.85六面体, 无包裹体及表面凹坑 (图2(a))
    S25.813000.351.65六-八面体, 少量包裹体, 无表面凹坑(图2(b))
    S35.813000.451.36近八面体, 无包裹体及表面凹坑 (图2(c))
    S45.813000.550.89八面体, 无包裹体及表面凹坑 (图2(d))
    S55.813000.600.27八面体, 表面存在沟壑状缺陷 (图4(a))
    S65.613000.070.15六八面体, 晶种附近较多包裹体 (图4(b))
    S75.613000.080.09六面体, 边缘出现较大尺寸孪晶 (图4(c))
    下载: 导出CSV

    表 2  Li3N添加金刚石单晶的氮含量

    Table 2.  Nitrogen contents of Li3N doped diamond single crystals.

    序号 Li3N添加质量
    含量/%
    C心N含量
    NC/×10–6
    金刚石样品
    a 0.07 356 S6
    b 0.25 493 S1
    c 0.35 616 S2
    d 0.45 770 S3
    e 0.55 892 S4
    下载: 导出CSV

    表 3  Li3N添加金刚石单晶的内应力σh

    Table 3.  Internal stress of Li3N doped diamond single crystals.

    序号拉曼峰值/cm–1γ/cm–1内应力σh/MPa
    a1330.921.08375
    b1330.811.19413
    c1330.771.23427
    e1330.501.50521
    下载: 导出CSV
    Baidu
  • [1]

    Bovenkerk H P, Bundy F P, Hall H T, Strong H M, Wentorf Jr R H 1959 Nature 184 1094Google Scholar

    [2]

    Li Y, Liao J H, Wang Y, She Y C, Xiao Z G, An J 2020 Opt. Mater. 101 109735Google Scholar

    [3]

    Ma Y M, Eremets M, Oganov A R, Xie Y, Trojan, Medvedev S 2009 Nature 458 182Google Scholar

    [4]

    Liu X B, Chen X, Singh D J, Stern R A, Wu J S, Petitgirard S, Bina C R, Jacobsen S D 2019 Proc. Natl. Acad. Sci. U. S A. 116 7703Google Scholar

    [5]

    Li Y, Chen X Z, Ran M W, She Y C, Xiao Z G, Hu M H, Wang Y, An J 2022 Chin. Phys. B 31 046107Google Scholar

    [6]

    Borzdov Y, Pal’yanov Y, Kupriyanov I, Gusev V, Khokhryakov A, Sokol A, Efremov A 2002 Diamond Relat. Mater. 11 1863Google Scholar

    [7]

    Ralchenko V, Sedov V, Martyanov A, Voronov V, Savin S, Khomich A 2022 Carbon 190 10Google Scholar

    [8]

    肖宏宇, 秦玉琨, 刘利娜, 鲍志刚, 唐春娟, 孙瑞瑞, 张永胜, 李尚升, 贾晓鹏 2018 67 140702Google Scholar

    Xiao H Y, Qin Y K, Liu L N, Bao Z G, Tang C J, Sun R R, Zhang Y S, Li S S, Jia X P 2018 Acta Phys. Sin. 67 140702Google Scholar

    [9]

    肖宏宇, 李勇, 鲍志刚, 佘彦超, 王应, 李尚升 2023 72 020701Google Scholar

    Xiao H Y, Li Y, Bao Z G, She Y C, Wang Y, Li S S 2023 Acta Phys. Sin. 72 020701Google Scholar

    [10]

    Li Y, Wang S, Xiao H Y, Wang Q, Xiao Z G, She Y C, Wang Y 2024 CrystEngComm 26 2190Google Scholar

    [11]

    Yelisseyev A P, Zhimulev E I, Karpovich Z A, Chepurov A A, Sonin V M, Chepurov A I 2022 Crys EngComm 24 4408

    [12]

    Razgulov A A, Lyapin S G, Novikov A P, Ekimov E A 2021 Diamond Relat. Mater. 116 108379Google Scholar

    [13]

    Bogdanov K V, Zhukovskaya M V, Osipov V Y, Ushakova E V, Baranov M A, Takai K, Rampersaud A, Baranov A V 2018 APL Mater. 6 086104Google Scholar

    [14]

    Li M, Wang Z W, Teng Y, Zhao H Y, Li B W, Liu Y, Wang S X, Yang Z Z, Chen L C, Ma H A, Jia X P 2024 Diamond Relat. Mater. 141 110605Google Scholar

    [15]

    Wang W H, Fang C, Chen L C, Zhang Z F, Zhang Y W, Wang Q Q, Biao W, Yang X, Ren W, Jia X P 2024 Diamond Relat. Mater. 142 110863Google Scholar

    [16]

    Liu Y, Wang Z W, Teng Y, Li B W, Zhao H Y, Guo Q Y, Chen L C, Ma H A, Jia X P 2023 Int. J. Refract. Me. Hard Mater. 118 106488

    [17]

    Nie Y, Li S S, Hu Q, Wang J Z, Hu M H, Su T C, Huang G F, Li Z C, Li Y, Xiao H Y 2023 Opt. Mater. 137 113538Google Scholar

    [18]

    Catledge S A, Vohra Y K, Ladi R, Rai G 1996 Diamond Relat. Mater. 5 1159Google Scholar

    [19]

    肖宏宇, 李勇, 田昌海, 张蔚曦, 王强, 肖政国, 王应, 金慧, 鲍志刚, 周振翔 2024 人工晶体学报 53 959Google Scholar

    Xiao H Y, Li Y, Tian C H, Zhang W X, Wang Q, Xiao Z G, Wang Y, Jin H, Bao Z G, Zhou Z X 2024 J. Synth. Cryst. 53 959Google Scholar

    [20]

    Capelli M, Heffernan A H, Ohshim T, Abe H, Jeske J, Hope A, Greentree A D, Reineck P, Gibson B C 2019 Carbon 143 714Google Scholar

    [21]

    Sedova V, Martyanov A, Savin S, Bolshakov A, Bushuev E, Khomich A, Kudryavtsev O, Krivobok V, Nikolaev S, Ralchenko V 2018 Diamond Relat. Mater. 90 47Google Scholar

    [22]

    Glinka Y D, Lin K W, Chang H C, Lin S H 1999 J. Phys. Chem. B 103 4251Google Scholar

    [23]

    Moussa J E, Marom N, Sai N, Chelikowsky J R 2012 Phys. Rev. Lett. 108 226404Google Scholar

  • [1] 王帅, 康如威, 李勇, 肖宏宇, 王应, 冉茂武, 马红安. B2S3对[111]晶向高压合成金刚石的影响.  , doi: 10.7498/aps.74.20250028
    [2] 田毅, 杜明浩, 张佳威, 贺端威. 立方大腔体静高压装置中叶腊石的传压及密封性能研究.  , doi: 10.7498/aps.73.20231087
    [3] 肖宏宇, 李勇, 鲍志刚, 佘彦超, 王应, 李尚升. 触媒组分对高温高压金刚石大单晶生长及裂纹缺陷的影响.  , doi: 10.7498/aps.72.20221841
    [4] 尤悦, 李尚升, 宿太超, 胡美华, 胡强, 王君卓, 高广进, 郭明明, 聂媛. 高温高压下金刚石大单晶研究进展.  , doi: 10.7498/aps.69.20200692
    [5] 秦玉琨, 肖宏宇, 刘利娜, 孙瑞瑞, 胡秋波, 鲍志刚, 张永胜, 李尚升, 贾晓鹏. 籽晶尺寸对宝石级金刚石单晶生长的影响.  , doi: 10.7498/aps.68.20181855
    [6] 李勇, 王应, 李尚升, 李宗宝, 罗开武, 冉茂武, 宋谋胜. 硼硫协同掺杂金刚石的高压合成与电学性能研究.  , doi: 10.7498/aps.68.20190133
    [7] 肖宏宇, 秦玉琨, 刘利娜, 鲍志刚, 唐春娟, 孙瑞瑞, 张永胜, 李尚升, 贾晓鹏. 降温工艺对宝石级金刚石单晶品质的影响.  , doi: 10.7498/aps.67.20180207
    [8] 王君卓, 李尚升, 宿太超, 胡美华, 胡强, 吴玉敏, 王健康, 韩飞, 于昆鹏, 高广进, 郭明明, 贾晓鹏, 马红安, 肖宏宇. Ib型金刚石大单晶的限形生长.  , doi: 10.7498/aps.67.20180356
    [9] 肖宏宇, 秦玉琨, 隋永明, 梁中翥, 刘利娜, 张永胜. 合成腔体尺寸对Ib型六面体金刚石单晶生长的影响.  , doi: 10.7498/aps.65.070705
    [10] 肖宏宇, 刘利娜, 秦玉琨, 张东梅, 张永胜, 隋永明, 梁中翥. B2O3添加宝石级金刚石单晶的生长特性.  , doi: 10.7498/aps.65.050701
    [11] 李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安. 硼氢协同掺杂Ib型金刚石大单晶的高温高压合成与电学性能研究.  , doi: 10.7498/aps.65.118103
    [12] 房超, 贾晓鹏, 陈宁, 周振翔, 李亚东, 李勇, 马红安. 添加Fe(C5H5)2合成氢掺杂金刚石大单晶及其表征.  , doi: 10.7498/aps.64.128101
    [13] 张贺, 李尚升, 宿太超, 胡美华, 周佑默, 樊浩天, 龚春生, 贾晓鹏, 马红安, 肖宏宇. 温度对Ib型和IIa型金刚石大单晶(100)表面特征的影响.  , doi: 10.7498/aps.64.198103
    [14] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安. 高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响.  , doi: 10.7498/aps.64.228101
    [15] 周振翔, 贾晓鹏, 李勇, 颜丙敏, 王方标, 房超, 陈宁, 李亚东, 马红安. 锌添加对大尺寸金刚石生长的影响.  , doi: 10.7498/aps.63.248104
    [16] 张嵩波, 王方标, 李发铭, 温戈辉. 高温高压方法合成碳包覆-Fe2O3纳米棒及其磁学性能.  , doi: 10.7498/aps.63.108101
    [17] 肖宏宇, 李尚升, 秦玉琨, 梁中翥, 张永胜, 张东梅, 张义顺. 高温高压下掺硼宝石级金刚石单晶生长特性的研究.  , doi: 10.7498/aps.63.198101
    [18] 肖宏宇, 苏剑峰, 张永胜, 鲍志刚. 温度梯度法宝石级金刚石的合成及表征.  , doi: 10.7498/aps.61.248101
    [19] 秦杰明, 张莹, 曹建明, 田立飞. 纯铁触媒合成磨料级金刚石及表征.  , doi: 10.7498/aps.60.058102
    [20] 秦杰明, 王皓, 曾繁明, 李建利, 万玉春, 刘景和. 高温高压下MgxZn1-xO固溶体的制备.  , doi: 10.7498/aps.59.8910
计量
  • 文章访问数:  303
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-25
  • 修回日期:  2025-01-16
  • 上网日期:  2025-02-09

/

返回文章
返回
Baidu
map