Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synthesis of diamond co-doped with B and S under high pressure and high temperature and electrical properties of the synthesized diamond

Li Yong Wang Ying Li Shang-Sheng Li Zong-Bao Luo Kai-Wu Ran Mao-Wu Song Mou-Sheng

Citation:

Synthesis of diamond co-doped with B and S under high pressure and high temperature and electrical properties of the synthesized diamond

Li Yong, Wang Ying, Li Shang-Sheng, Li Zong-Bao, Luo Kai-Wu, Ran Mao-Wu, Song Mou-Sheng
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • As is well known, diamond is extensively used in many fields, because of its excellent properties, such as its hardness, high thermal conductivity, high electron and hole mobility, high breakdown field strength and large band gap (5.4 eV). However, its application in semiconductor area needs to be further understood, because it is irreplaceable by conventional semiconductor materials, especially in the extreme working conditions. Furthermore, the preparation of n-type diamond semiconductors is still an unsolved problem. The reason is that an effective donor element has not yet been found. Recently, both the theoretical and experimental studies show that it is difficult to obtain n-type diamond semiconductor with excellent properties by doping single element in the synthetic system. In this paper, diamond single crystals co-doped with B and S are successfully synthesized in FeNiMnCo-C system at a pressure of 6.5 GPa and temperature ranging from 1280 ℃ to 1300 ℃, by using temperature gradient method. The impurity defects in the synthesized diamond single crystals are characterized by Fourier infrared absorption spectra and the results indicate that the corresponding characteristic absorption peaks of B and S are located at 1298 cm–1 and 847 cm–1, respectively. Furthermore, the absorption attributed to B-S group is not detected. The N concentration of the synthesized diamond crystals decreases to 195 ppm, resulting from the incorporation of B and S impurities into the diamond lattices. Additionally, the electrical properties of the typical diamond single crystals are measured in virtue of Hall effects at room temperature. The measurement results display that the electrical conductivity of the diamond doped with B is obviously enhanced, resulting from the involvement of the S when B addition amount is fixed in the synthesis system. Hall mobility of the corresponding diamond crystals increases from 12.5 cm–2·V–1·s–1 to 760.87 cm–2·V–1·s–1. And then, the relative proportion of S and B will determine the p/n properties of the obtained diamond. In order to further study the electrical properties of diamond, first-principles calculations are adopted and the theoretical calculation results show that the impurity elements involved in the obtained diamond can affect the band structures of the synthetic diamond crystals, which is consistent with the experimental result.
      Corresponding author: Li Zong-Bao, zongbaoli1982@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11604246), the Natural Science Foundation of Guizhou Province Education Department, China (Grant No. KY[2017]053), the Natural Science Foundation of Guizhou Province Science and Technology Agency, China (Grant No. [2018]1163), and the Outstanding Young Science and Technology Talents of Guizhou Province, China.
    [1]

    王君卓, 李尚升, 宿太超, 胡美华, 胡强, 吴玉敏, 王健康, 韩飞, 于昆鹏, 高广进, 郭明明, 贾晓鹏, 马红安, 肖宏宇 2018 67 168101Google Scholar

    Wang J Z, Li S S, Su T C, Hu M H, Hu Q, Wu Y M, Wang J K, Han F, Yu K P, Gao G J, Guo M M, Jia X P, Ma H A, Xiao H Y 2018 Acta Phys. Sin. 67 168101Google Scholar

    [2]

    刘银娟, 贺端威, 王培, 唐明君, 许超, 王文丹, 刘进, 刘国端, 寇自力 2017 66 038103Google Scholar

    Liu Y J, He D W, Wang P, Tang M J, Xu C, Wang W D, Liu J, Liu G D, Kou Z L 2017 Acta Phys. Sin. 66 038103Google Scholar

    [3]

    Li Y, Zhou Z X, Guan X M, Li S S, Wang Y, Jia X P, Ma H A 2016 Chin. Phys. Lett. 33 028101Google Scholar

    [4]

    Banerjee A, Bernoulli D, Zhang H T, Yuen M F, Liu J B, Dong J C, Ding F, Lu J, Dao M, Zhang W J, Lu Y, Suresh S 2018 Science 360 300Google Scholar

    [5]

    Wang J K, Li S S, Jiang Q W, Song Y L, Yu K P, Han F, Su T C, Hu M H, H Q, Ma H A, Jia X P, Xiao H Y 2018 Chin. Phys. B 27 088102Google Scholar

    [6]

    Ekimov E A, Sidorov1 V A, Bauer E D, Mel'nik N N, Curro N J, Thompson J D, Stishov1 S M 2004 Nature 428 542Google Scholar

    [7]

    Prawer S, Uzan-Sanay C, Braunstein G 1993 Appl. Phys. Lett. 63 2502Google Scholar

    [8]

    Jackson K, Pederson M R, Harrison J G 1990 Phys. Rev. B 41 12641Google Scholar

    [9]

    Cao G Z, Driessen F A J M, Bauhuis C J 1995 J. Appl. Phys. 78 3125Google Scholar

    [10]

    Gong C S, Li S S, Zhang H R, Su T C, Hu M H, Ma H A, Jia X P, Li Y 2017 Int. J. Refract. Metals and Hard Mater. 66 116Google Scholar

    [11]

    Yan B M, Jia X P, Sun S S, Zhou Z X, Fang C, Chen N, Li Y D, Li Y, Ma H A 2015 Int. J Refract. Metals and Hard Mater. 48 56Google Scholar

    [12]

    Fang C, Jia X P, Sun S S, Yan B M, Li Y D, Chen N, Li Y, Ma H A 2016 High Pressure Res. 36 42Google Scholar

    [13]

    Katayama Yoshida H, Nishimatsu T, Yamamoto T, Orita N 2001 J. Phys.: Cond. Matter 13 8901Google Scholar

    [14]

    Li Y, Jia X P, Ma H A, Zhang J, Wang F B, Chen N, Feng Y G 2014 CrystEngComm 16 7547Google Scholar

    [15]

    肖宏宇, 秦玉琨, 隋永明, 梁中翥, 刘利娜, 张永胜 2016 65 070705Google Scholar

    Xiao H Y, Qin Y K, Sui Y M, Liang Z Z, Liu L N, Zhang Y S, 2016 Acta Phys. Sin. 65 070705Google Scholar

    [16]

    秦杰明, 张莹, 曹建明, 田立飞, 董中伟, 李岳 2011 60 036105Google Scholar

    Qin J M, Zhang Y, Cao J M, Tian L F, Dong Z W, Li Y 2011 Acta Phys. Sin. 60 036105Google Scholar

    [17]

    Sumiya H, Toda N, Nishibayashi Y, Satoh S 1997 J. Crystal Growth 178 485Google Scholar

    [18]

    Liang Z Z, Jia X P, Ma H A, Zang C Y, Zhu P W, Guan Q F, Kanda H 2005 Diamond Relat. Mater. 14 1932Google Scholar

    [19]

    Ma L Q, Ma H A, Xiao H Y, Li S S, Li Y, Jia X P 2010 Chin. Sci. Bull. 55 677Google Scholar

    [20]

    Zhang J Q, Ma H A, Jiang Y P, Liang Z Z, Tian Y, Jia X P 2007 Diamond Relat. Mater. 16 283Google Scholar

    [21]

    李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安 2016 65 118103Google Scholar

    Li Y, Li Z B, Song M S, Wang Y, Jia X P, Ma H A 2016 Acta Phys. Sin. 65 118103Google Scholar

    [22]

    王应, 李勇, 李宗宝 2016 65 087101Google Scholar

    Wang Y, Li Y, Li Z B 2016 Acta Phys. Sin. 65 087101Google Scholar

  • 图 1  金刚石合成腔体示意图(1, 钢帽; 2, 石墨片; 3, 氯化钠管; 4, 陶瓷堵头; 5, 石墨加热管; 6, 触媒; 7, 碳源; 8, 绝缘管; 9, 晶种; 10, 叶蜡石)

    Figure 1.  Schematic of the cell for diamond synthesis (1, conductive ring; 2, graphite sheet; 3, NaCl tube; 4, ceramic cylinder and cover; 5, graphite heater; 6, catalyst; 7, carbon source; 8, insulation tube; 9, seed crystal; 10, pyrophyllite).

    图 2  FeNiMnCo-C体系中所合成的金刚石光学照片

    Figure 2.  Optical images of diamond synthesized in FeNiMnCo-C system.

    图 3  硼硫协同掺杂金刚石的红外光谱 (a)添加1.2%硼和添加2.0%硫; (b)添加0.8%硼和添加2.0%硫

    Figure 3.  FTIR spectra of diamond co-doped with B and S: (a) With 1.2% B and 2.0% S additives; (b) with 0.8% B and 2.0% S additives.

    图 4  金刚石能带结构 (a)未添加硼与硫; (b)添加2.0%硫; (c)添加1.2%硼和2.0%硫; (d)添加0.8%硼和2.0%硫

    Figure 4.  Band structures of the synthesized diamond: (a) Without B or S additive; (b) with 2.0% S additive; (c) with 1.2% B and 2.0% S additives; (d) with 0.8% B and 2.0% S additives.

    表 1  金刚石合成参数

    Table 1.  Parameters of the synthetic experiments of diamond performed at 6.5 GPa in the FeNiMnCo-C system.

    Sample B/% S/% 温度/℃ 颜色
    (a) 1280 黄色
    (b) 2.0 1280 黄色
    (c) 1.2 1280 黄黑色
    (d) 1.2 2.0 1300 黑色
    (e) 0.8 2.0 1290 黄色
    DownLoad: CSV

    表 2  金刚石样品的电学性能参数((a)未添加硼与硫, (b)添加2.0%硫, (c)添加1.2%硼, (d)添加1.2%硼和2.0%硫, (e)添加0.8%硼和2.0 %硫)

    Table 2.  Electrical performance parameters of the diamond samples measured at room temperature ((a) without B or S additives, (b) with 2.0 wt.% S additive, (c) with 1.2% B additive, (d) with 1.2% B and 2.0% S additives, (e) with 0.8% B and 2.0% S additives).

    Sample 电阻率/Ω·cm 载流子浓度/cm–3 迁移率/cm–2·V–1·s–1 Hall系数
    (a) > 108
    (b) 4.417 × 106 5.383 × 109 262.853 –1.151 × 109
    (c) 3.665 × 103 1.364 × 1016 12.5 4.586 × 104
    (d) 8.510 6.652 × 1014 760.870 6.475 × 103
    (e) 1.262 × 106 8.738 × 1010 56.680 –7.153 × 107
    DownLoad: CSV
    Baidu
  • [1]

    王君卓, 李尚升, 宿太超, 胡美华, 胡强, 吴玉敏, 王健康, 韩飞, 于昆鹏, 高广进, 郭明明, 贾晓鹏, 马红安, 肖宏宇 2018 67 168101Google Scholar

    Wang J Z, Li S S, Su T C, Hu M H, Hu Q, Wu Y M, Wang J K, Han F, Yu K P, Gao G J, Guo M M, Jia X P, Ma H A, Xiao H Y 2018 Acta Phys. Sin. 67 168101Google Scholar

    [2]

    刘银娟, 贺端威, 王培, 唐明君, 许超, 王文丹, 刘进, 刘国端, 寇自力 2017 66 038103Google Scholar

    Liu Y J, He D W, Wang P, Tang M J, Xu C, Wang W D, Liu J, Liu G D, Kou Z L 2017 Acta Phys. Sin. 66 038103Google Scholar

    [3]

    Li Y, Zhou Z X, Guan X M, Li S S, Wang Y, Jia X P, Ma H A 2016 Chin. Phys. Lett. 33 028101Google Scholar

    [4]

    Banerjee A, Bernoulli D, Zhang H T, Yuen M F, Liu J B, Dong J C, Ding F, Lu J, Dao M, Zhang W J, Lu Y, Suresh S 2018 Science 360 300Google Scholar

    [5]

    Wang J K, Li S S, Jiang Q W, Song Y L, Yu K P, Han F, Su T C, Hu M H, H Q, Ma H A, Jia X P, Xiao H Y 2018 Chin. Phys. B 27 088102Google Scholar

    [6]

    Ekimov E A, Sidorov1 V A, Bauer E D, Mel'nik N N, Curro N J, Thompson J D, Stishov1 S M 2004 Nature 428 542Google Scholar

    [7]

    Prawer S, Uzan-Sanay C, Braunstein G 1993 Appl. Phys. Lett. 63 2502Google Scholar

    [8]

    Jackson K, Pederson M R, Harrison J G 1990 Phys. Rev. B 41 12641Google Scholar

    [9]

    Cao G Z, Driessen F A J M, Bauhuis C J 1995 J. Appl. Phys. 78 3125Google Scholar

    [10]

    Gong C S, Li S S, Zhang H R, Su T C, Hu M H, Ma H A, Jia X P, Li Y 2017 Int. J. Refract. Metals and Hard Mater. 66 116Google Scholar

    [11]

    Yan B M, Jia X P, Sun S S, Zhou Z X, Fang C, Chen N, Li Y D, Li Y, Ma H A 2015 Int. J Refract. Metals and Hard Mater. 48 56Google Scholar

    [12]

    Fang C, Jia X P, Sun S S, Yan B M, Li Y D, Chen N, Li Y, Ma H A 2016 High Pressure Res. 36 42Google Scholar

    [13]

    Katayama Yoshida H, Nishimatsu T, Yamamoto T, Orita N 2001 J. Phys.: Cond. Matter 13 8901Google Scholar

    [14]

    Li Y, Jia X P, Ma H A, Zhang J, Wang F B, Chen N, Feng Y G 2014 CrystEngComm 16 7547Google Scholar

    [15]

    肖宏宇, 秦玉琨, 隋永明, 梁中翥, 刘利娜, 张永胜 2016 65 070705Google Scholar

    Xiao H Y, Qin Y K, Sui Y M, Liang Z Z, Liu L N, Zhang Y S, 2016 Acta Phys. Sin. 65 070705Google Scholar

    [16]

    秦杰明, 张莹, 曹建明, 田立飞, 董中伟, 李岳 2011 60 036105Google Scholar

    Qin J M, Zhang Y, Cao J M, Tian L F, Dong Z W, Li Y 2011 Acta Phys. Sin. 60 036105Google Scholar

    [17]

    Sumiya H, Toda N, Nishibayashi Y, Satoh S 1997 J. Crystal Growth 178 485Google Scholar

    [18]

    Liang Z Z, Jia X P, Ma H A, Zang C Y, Zhu P W, Guan Q F, Kanda H 2005 Diamond Relat. Mater. 14 1932Google Scholar

    [19]

    Ma L Q, Ma H A, Xiao H Y, Li S S, Li Y, Jia X P 2010 Chin. Sci. Bull. 55 677Google Scholar

    [20]

    Zhang J Q, Ma H A, Jiang Y P, Liang Z Z, Tian Y, Jia X P 2007 Diamond Relat. Mater. 16 283Google Scholar

    [21]

    李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安 2016 65 118103Google Scholar

    Li Y, Li Z B, Song M S, Wang Y, Jia X P, Ma H A 2016 Acta Phys. Sin. 65 118103Google Scholar

    [22]

    王应, 李勇, 李宗宝 2016 65 087101Google Scholar

    Wang Y, Li Y, Li Z B 2016 Acta Phys. Sin. 65 087101Google Scholar

  • [1] Xiao Hong-Yu, Wang Shuai, Kang Ru-Wei, Li Yong, Li Shang-Sheng, Tian Chang-Hai, Wang Qiang, Jin Hui, Ma Hong-An. Study on the growth of Li3N doped diamond single crystals under HPHT. Acta Physica Sinica, 2025, 74(7): . doi: 10.7498/aps.74.20241769
    [2] WANG Shuai, KANG Ruwei, LI Yong, XIAO Hongyu, WANG Ying, RAN Maowu, MA Hongan. Effects of B2S3 additive on the [111]-oriented diamond crystal synthesized from high pressure condition. Acta Physica Sinica, 2025, 74(7): . doi: 10.7498/aps.74.20250028
    [3] Zhao Yong-Sheng, Yan Feng-Yun, Liu Xue. Calculation of positron annihilation lifetime in diamond doped with B, Cr, Mo, Ti, W, Zr. Acta Physica Sinica, 2024, 73(1): 017802. doi: 10.7498/aps.73.20231269
    [4] Xiao Hong-Yu, Li Yong, Bao Zhi-Gang, She Yan-Chao, Wang Ying, Li Shang-Sheng. Effect of catalyst composition on growth and crack defects of large diamond single crystal under high temperature and pressure. Acta Physica Sinica, 2023, 72(2): 020701. doi: 10.7498/aps.72.20221841
    [5] Liu Yin-Juan, He Duan-Wei, Wang Pei, Tang Ming-Jun, Xu Chao, Wang Wen-Dan, Liu Jin, Liu Guo-Duan, Kou Zi-Li. Syntheses and studies of superhard composites under high pressure. Acta Physica Sinica, 2017, 66(3): 038103. doi: 10.7498/aps.66.038103
    [6] Xiao Hong-Yu, Liu Li-Na, Qin Yu-Kun, Zhang Dong-Mei, Zhang Yong-Sheng, Sui Yong-Ming, Liang Zhong-Zhu. Syntheses of B2O3-doped gem-diamond single crystals. Acta Physica Sinica, 2016, 65(5): 050701. doi: 10.7498/aps.65.050701
    [7] Li Yong, Li Zong-Bao, Song Mou-Sheng, Wang Ying, Jia Xiao-Peng, Ma Hong-An. Synthesis and electrical properties study of Ib type diamond single crystal co-doped with boron and hydrogen under HPHT conditions. Acta Physica Sinica, 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [8] Fang Chao, Jia Xiao-Peng, Yan Bing-Min, Chen Ning, Li Ya-Dong, Chen Liang-Chao, Guo Long-Suo, Ma Hong-An. Effects of nitrogen and hydrogen co-doped on {100}-oriented single diamond under high temperature and high pressure. Acta Physica Sinica, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [9] Xiao Hong-Yu, Li Shang-Sheng, Qin Yu-Kun, Liang Zhong-Zhu, Zhang Yong-Sheng, Zhang Dong-Mei, Zhang Yi-Shun. Studies on synthesis of boron-doped Gem-diamond single crystals under high temperature and high presure. Acta Physica Sinica, 2014, 63(19): 198101. doi: 10.7498/aps.63.198101
    [10] Liu Yan-Wen, Wang Xiao-Xia, Zhu Hong, Han Yong, Gu Bing, Lu Yu-Xin, Fang Rong. Influence of diamond on heat dissipation capability of slow-wave structure of helix TWT. Acta Physica Sinica, 2013, 62(23): 234402. doi: 10.7498/aps.62.234402
    [11] Wang Feng-Hao, Hu Xiao-Jun. Microstructural and photoelectrical properties of oxygen-ion-implanted microcrystalline diamond films. Acta Physica Sinica, 2013, 62(15): 158101. doi: 10.7498/aps.62.158101
    [12] Lin Xue-Ling, Pan Feng-Chun. The magnetism study of N-doped diamond. Acta Physica Sinica, 2013, 62(16): 166102. doi: 10.7498/aps.62.166102
    [13] Gu Shan-Shan, Hu Xiao-Jun, Huang Kai. Effects of annealing temperature on the microstructure and p-type conduction of B-doped nanocrystalline diamond films. Acta Physica Sinica, 2013, 62(11): 118101. doi: 10.7498/aps.62.118101
    [14] Zhang Qiang, Zhu Xiao-Hong, Xu Yun-Hui, Xiao Yun-Jun, Gao Hao-Bin, Liang Da-Yun, Zhu Ji-Liang, Zhu Jian-Guo, Xiao Ding-Quan. Effect of Mn4+ doping on the microstructure and electrical property of BiFeO3 ceramic. Acta Physica Sinica, 2012, 61(14): 142301. doi: 10.7498/aps.61.142301
    [15] Qin Jie-Ming, Ying Zhang, Cao Jian-Ming, Tian Li-Fei. Synthesis and characterization of the grinding compoundlevel diamond by pure Fe catalyst. Acta Physica Sinica, 2011, 60(5): 058102. doi: 10.7498/aps.60.058102
    [16] Li Rong-Bin. Characterization of homoepitaxial and heteroepitaxial diamond films grown by chemical vapor deposition. Acta Physica Sinica, 2009, 58(2): 1287-1292. doi: 10.7498/aps.58.1287
    [17] Jiang Xue-Ning, Wang Hao, Ma Xiao-Ye, Meng Xian_Qin, Zhang Qing-Yu. Growth and electrical conductivity of Gd2O3 doped CeO2 ion conductor electrolyte film on sapphire substrate. Acta Physica Sinica, 2008, 57(3): 1851-1856. doi: 10.7498/aps.57.1851
    [18] Wang Lin-Jun, Liu Jian-Min, Su Qing-Feng, Shi Wei-Min, Xia Yi-Ben. Electrical properties of alpha-particle detectors based on CVD diamond films. Acta Physica Sinica, 2006, 55(5): 2518-2522. doi: 10.7498/aps.55.2518
    [19] Wen Chao, Sun De-Yu, Li Xun, Guan Jin-Qing, Liu Xiao-Xin, Lin Ying-Rui, Tang Shi-Ying, Zhou Gang, Lin Jun-De, Jin Zhi-Hao. Nano-graphite synthesized by explosive detonation and its application in preparing diamond under high-pressure and high-temperature. Acta Physica Sinica, 2004, 53(4): 1260-1264. doi: 10.7498/aps.53.1260
    [20] Hu Xiao-Jun, Li Rong-Bin, Shen He-Sheng, He Xian-Chang, Deng Wen, Luo Li-Xiong. Investigation of defect properties in doped diamond films. Acta Physica Sinica, 2004, 53(6): 2014-2018. doi: 10.7498/aps.53.2014
Metrics
  • Abstract views:  10032
  • PDF Downloads:  104
  • Cited By: 0
Publishing process
  • Received Date:  23 January 2019
  • Accepted Date:  26 February 2019
  • Available Online:  01 May 2019
  • Published Online:  05 May 2019

/

返回文章
返回
Baidu
map