-
Diamond has a series of extreme characteristics superior to other materials, and also very wide application scope. The large diamond single crystal can play a role in its functional characteristics, which has become a research hotspot. In this paper, we introduce the principle and process of synthesizing large diamond single crystal by temperature gradient method (TGM) under high pressure and high temperature (HPHT), and summarizes the research status and research directions of different types of and additives-doped large diamond single crystals respectively. The principle of the temperature gradient method is that the carbon source, driven by the temperature gradient, diffuses from the high concentration region at the high temperature end to the low concentration region at the low temperature end, and diamonds are grown on the seed crystal. The growth rate of diamond crystal is controlled by adjusting the axial temperature gradient at synthesis cell, and the shape growth of Ib-type large diamond is controlled by the distribution in the V-shaped growth area. We introduce different kinds of diamond large single crystals from five aspects. Firstly, the Ia-type diamond large single crystal can be obtained by the annealing treatment of Ib-type diamond under HPHT. The conversion rate of C centre to A centre for nitrogen in diamond is improved by optimizing the conditions of HPHT. Secondly, the Ib-type larger diamond is studied very much in the following areas: the analysis of its surface characteristic, the control of inclusions and cracks, the precipitation mechanism and the elimination measures of regrown graphite and the mass production technology of multiseed method. Thirdly, IIa-type large diamond single crystal is introduced in which the nitrogen getter is selected due to the ability Al and Ti (Cu) to getter nitrogen, the catalyst is selected because of its effect on the nitrogen content in the diamond synthesized with Fe or Ni based catalyst, and the elimination method of microcrystalline graphite precipitation is presented by analyzing its mechanism. Fourthly, the boron elements exist in IIb-type diamond and have influence on the growth characteristics of synthetic diamond. Fifthly, introduced is the research status of diamond synthesized with B, N, S, P doping elements, in which its individual substance or their compound is used as a doping source or boron and other elements with small radius are used as co-doping agent. Then S or P with B co-doping is more conducive to the improvement of the performance of n-type diamond large single crystal semiconductor. Therefore, it is proposed that the large diamond single crystal need strengthening in mass production of IIa-type large diamond single crystal, superconducting characteristics of IIb-type large diamond single crystal, and doping of n-type semiconductors.
-
Keywords:
- high pressure and high temperature /
- temperature gradient method /
- large diamond single crystal
[1] Kiflawi I, Bruley J 2000 Diamond Relat. Mater. 9 87Google Scholar
[2] 龚春生, 李尚升, 张贺 2016 材料导报 30 36Google Scholar
Gong C S, Li S S, Zhang H 2016 Mater. Rev. 30 36Google Scholar
[3] 唐敬友, 董庆东, 谷岩 2000 金刚石与磨料磨具工程 03 24Google Scholar
Tang J Y, Dong Q D, Gu Y 2000 Diamond Abras. Eng. 03 24Google Scholar
[4] 胡美华, 马红安, 颜丙敏, 张壮飞, 李勇, 周振翔, 秦杰明, 贾晓鹏 2012 61 078102Google Scholar
Hu M H, Ma H A, Yan B M, Zhang Z F, Li Y, Zhou Z X, Qin J M, Jia X P 2012 Acta Phys. Sin. 61 078102Google Scholar
[5] 满卫东, 吕继磊, 吴宇琼, 陈朋, 朱金凤, 董维 2010 宝石和宝石学杂志 12 6Google Scholar
Man W D, Lv J L, Wu Y Q, Chen P, Zhu J F, Dong W 2010 J. Gems Gemmol. 12 6Google Scholar
[6] Mankelevich Y A, May P W 2008 Diamond Relat. Mater. 17 1021Google Scholar
[7] Chrenko R M, Strong H M, Tuft R E 1971 Philos. Mag. A 23 313Google Scholar
[8] Kanda H, Akaishi M, Yamaoka S 1999 Diamond Relat. Mater. 8 1441Google Scholar
[9] Sumiya H, Harano K, Tamasaku K 2015 Diamond Relat. Mater. 58 221Google Scholar
[10] Demlow S N, Rechenberg R, Grotjohn T 2014 Diamond Relat. Mater. 49 19Google Scholar
[11] Stefanova A, Ayata S, Erema A, Ernst S, Baltruschat H 2013 Electrochim. Acta 110 560Google Scholar
[12] Blank V D, Kuznetsov M S, Nosukhin S A, Terentiev S A, Denisov V N 2007 Diamond Relat. Mater. 16 800Google Scholar
[13] Grotjohn T A, Tran D T, Yaran M K, Demlow S N, Schuelke T 2014 Diamond Relat. Mater. 44 129Google Scholar
[14] 李尚升, 马红安, 臧传义, 田宇, 张亚飞, 肖宏宇, 尹斌华, 贾晓鹏 2006 金刚石与磨料磨具工程 152 16Google Scholar
Li S S, Ma H A, Zang C Y, Tian Y, Zhang Y F, Xiao H Y, Yin B H, Jia X P 2006 Diamond Abras. Eng. 152 16Google Scholar
[15] Li S S, Zhang H, Su T C, Hu Q, Hu M H, Gong C S, Ma H A, Jia X P, Li Y, Xiao H Y 2017 Chin. Phys. B 26 068102Google Scholar
[16] Zhang H, Li S S, Su T C, Hu M H, Ma H A, Jia X P, Li Y 2017 Chin. Phys. B 26 058102Google Scholar
[17] 罗宁, 李尚升, 贾晓鹏 2012 金刚石与磨料磨具工程 32 15Google Scholar
Luo N, Li S S, Jia X P 2012 Diamond Abras. Eng. 32 15Google Scholar
[18] 熊礼威, 汪建华, 满卫东, 刘长林, 翁俊 2010 材料导报 24 117Google Scholar
Xiong L W, Wang J H, Man W D, Li C L, Weng J 2010 Mater. Rev. 24 117Google Scholar
[19] Chevallier J, Ballutaud D, Bertrand T, Jomard F, Deneuville A, Etienne G, Pruvost F 1999 Phys. Status Solidi A 174 73Google Scholar
[20] Wentorf R H 1971 J. Phys. Chem. 75 1833Google Scholar
[21] 肖宏宇, 苏剑峰, 张永胜, 鲍志刚 2012 61 248101Google Scholar
Xiao H Y, Su J F, Zhang Y S, Bao Z G 2012 Acta Phys. Sin. 61 248101Google Scholar
[22] 张聪, 韩奇钢, 马红安, 肖宏宇, 李瑞, 李战厂, 田宇, 贾晓鹏 2010 59 1923Google Scholar
Zhang C, Han Q G, Ma H A, Xiao H Y, Li R, Li Z C, Jia X P 2010 Acta Phys. Sin. 59 1923Google Scholar
[23] Li Z C, Jia X P, Huang G F, Hu M H, Li Y, Yan B M, Ma H A 2013 Chin. Phys. B 22 014701Google Scholar
[24] Hu M H, Li S S, Ma H A, Su T C, Li X L, Hu Q, Ji X P 2012 Chin. Phys. B 21 098101Google Scholar
[25] Li Y D, Jia X P, Yan B M, Chen N, Fang C, Li Y, Sun S S, Ma H A 2016 RSC Adv. 6 40330Google Scholar
[26] 肖宏宇, 秦玉琨, 刘利娜, 鲍志刚, 唐春娟, 孙瑞瑞, 张永胜, 李尚升, 贾晓鹏 2018 67 140702Google Scholar
Xiao H Y, Qin Y K, Li L N, Bao Z G, Tang C J, Sun R R, Zhang Y S, Li S S, Jia X P 2018 Acta Phys. Sin. 67 140702Google Scholar
[27] Sumiya H, Toda N, Satoh S 2002 J. Cryst. Growth 237 1281Google Scholar
[28] Kiflawi I, Kanda H, Lawson S C 2002 Diamond Relat. Mater. 11 204Google Scholar
[29] Reutsky V N, Borzdov Y M, Palyanov Y N 2012 Diamond Relat. Mater. 21 7Google Scholar
[30] Tian Y, Ma H A, Li S S, Xiao H Y, Zhang Y F, Huang G F, Ma L Q, Jia X P 2007 Chin. Phys. Lett. 24 2115Google Scholar
[31] 肖宏宇, 秦玉琨, 隋永明, 梁中翥, 刘利娜, 张永胜 2016 65 070705Google Scholar
Xiao H Y, Qin Y K, Sui Y M, Liang Z Z, Liu L N, Zhang Y S 2016 Acta Phys. Sin. 65 070705Google Scholar
[32] 秦玉琨, 肖宏宇, 刘利娜, 孙瑞瑞, 胡秋波, 鲍志刚, 张永胜, 李尚升, 贾晓鹏 2019 68 020701Google Scholar
Qin Y K, Xiao H Y, Liu L N, Sun R R, Hu Q B, Bao Z G, Zhang Y S, Li S S, Jia X P 2019 Acta Phys. Sin. 68 020701Google Scholar
[33] 张恒涛, 肖长江, 尚秋元, 栗正新, 朱玲艳 2013 材料导报 27 65Google Scholar
Zhang H T, Xiao C J, Shang Q Y, Li Z X, Zhu L Y 2013 Mater. Rev. 27 65Google Scholar
[34] Sumiya H, Toda N, Satoh S 2005 Sei. Tech. Rev. 60 10
[35] Abbaschian R, Zhu H, Clarke C 2005 Diamond Relat. Mater. 14 1916Google Scholar
[36] Xiao H Y, Jia X P, Zang C Y, Li S S, Tian Y, Zhang Y F, Huang G F, Ma L Q, Ma H A 2008 Chin. Phys. Lett. 25 1469Google Scholar
[37] 王君卓, 李尚升, 宿太超, 胡美华, 胡强, 吴玉敏, 王健康, 韩飞, 于昆鹏, 高广进, 郭明明, 贾晓鹏, 马红安, 肖宏宇 2018 67 168101Google Scholar
Wang J Z, Li S S, Su T C, Hu M H, Hu Q, Wu Y M, Wang J K, Han F, Yu K P, Gao G J, Guo M M, Jia X P, Ma H A, Xiao H Y 2018 Acta Phys. Sin. 67 168101Google Scholar
[38] Chrenko R M, Tuft R E, Strong H M 1977 Nature 270 141Google Scholar
[39] Chepurov A A, Dereppe J M, Fedorov I I, Chepurov A I 2000 Diamond Relat. Mater. 9 1374Google Scholar
[40] Evans T, Qi Z 1982 Proc. R. Soc. A 381 159Google Scholar
[41] Mainwood A 1994 Phys. Rev. B 49 7934Google Scholar
[42] Kanda H, Akaishi M, Setaka N, Yamaoka S, Fukunaga O 1980 J. Mater. Sci. 15 2743Google Scholar
[43] Zang C Y, Huang G F, Ma H A, Jia X P 2007 Chin. Phys. Lett. 24 2991Google Scholar
[44] 张贺, 李尚升, 宿太超, 胡美华, 周佑默, 樊浩天, 龚春生, 贾晓鹏, 马红安, 肖宏宇 2015 64 198103Google Scholar
Zhang H, Li S S, Su T C, Hu M H, Zhou Y M, Fan H T, Gong C S, Jia X P, Ma H A, Xiao H Y 2015 Acta Phys. Sin. 64 198103Google Scholar
[45] Beha K, Batalov A, Manson N B, Bratschitsch R, Leitenstorfer A 2012 Phys. Rev. Lett. 109 097404Google Scholar
[46] 董杨, 杜博, 张少春, 陈向东, 孙方稳 2018 67 160301Google Scholar
Dong Y, Du B, Zhang S C, Chen S C, Sun F W 2018 Acta Phys. Sin. 67 160301Google Scholar
[47] Chen L C, Miao X Y, Ma H A, Guo L S, Chen L X, Wang Z K, Yang Z Q, Jia X P 2018 CrystEngComm 20 7164Google Scholar
[48] Chen N, Ma H A, Yan B M, Chen L C, Chen L X, Guo L S, Miao X Y, Fang C, Jia X P 2018 Cryst. Growth Des. 18 3870Google Scholar
[49] Han F, Li S S, Jia X F, Chen W Q, Su T C, Hu M H, Yu K P, Wang J K, WuY M, Ma H A, Jia X P 2019 Chin. Phys. B 28 028103Google Scholar
[50] Tatsumi N, Tamasaku K, Ito T, Sumiya H 2017 J. Cryst. Growth 458 27
[51] Masuya S, Hanada K, Oshima T, Sumiya H, Kasu M 2017 Diamond Relat. Mater. 75 155Google Scholar
[52] 臧传义, 马红安, 黄国峰, 贾晓鹏 2007 人工晶体学报 36 536Google Scholar
Zang C Y, Ma H A, Huang G F, Jia X P 2007 J. Synthetic Cryst. 36 536Google Scholar
[53] 臧传义, 马红安, 黄国锋, 贾晓鹏 2007 吉林大学学报: 工学版 37 1097
Zang C Y, Ma H A, Huang G F, Jia X P 2007 J. Jilin Univ: Technol. Ed. 37 1097
[54] Zang C Y, Chen X Z, Hu Q, Ma H A, Jia X P 2009 Chin. Sci. Bull. 54 2535Google Scholar
[55] 黄国锋, 臧传义, 马红安, 李尚升, 田宇, 肖宏宇, 张亚飞, 马利秋, 李勇, 陈孝洲, 贾晓鹏 2008 超硬材料工程 20 9Google Scholar
Huang G F, Zang C Y, Ma H A, Li S S, Tian Y, Xiao H Y, Zhang Y F, Ma L Q, Li Y, Chen X Z, Jiao X P 2008 Superhard Mater. Eng. 20 9Google Scholar
[56] 胡美华, 毕宁, 李尚升, 宿太超, 李小雷, 胡强, 贾晓鹏, 马红安 2013 62 188103
Hu M H, Bi N, Li S S, Su T C, Li X L, Hu Q, Jia X P, Ma H A 2013 Acta Phys. Sin. 62 188103
[57] Han Q G, Ban Q C, Zhu P W 2015 J. Cryst. Growth 422 29Google Scholar
[58] Li S S, Li X L, Ma H A, Su TC, Xiao H Y, Huang G F, Li Y, Zhang Y S, Jia X P 2011 Chin. Phys. Lett. 28 68101Google Scholar
[59] Wang X C, Ma H A, Zang C Y, Tian Y, Li S S, Jia X P 2005 Chin. Phys. Lett. 22 1800Google Scholar
[60] Li S S, Jia X P, Zang C Y, Tian Y, Zang Y F, Xiao H Y, Huang G F, Ma L Q, Li Y, Li X L, Ma H A 2008 Chin. Phys. Lett. 25 3801Google Scholar
[61] Lysakovskii V V, Ivakhnenko S A 2009 J. Superhard Mater. 31 7Google Scholar
[62] Guo M M, Li S S, Hu M H, Su T C, Wang J Z, Gao G J, You Y, Nie Y 2020 Chin. Phys. B 29 018101Google Scholar
[63] 李尚升, 张曙光, 李小雷, 宿太超, 肖宏宇, 黄国锋, 李勇, 马红安, 贾晓鹏 2011 功能材料 42 58
Li S S, Zhang S G, Li X L, Su T C, Xiao H Y, Huang G F, Li Y, Ma H A, Jia X P 2011 J. Funct. Mater. 42 58
[64] Li S S, Gong C S, Su T C, Hu M H, Zhang H, Ma H A, Jia X P 2017 Int. J. Refract. Met. Hard Mater. 62 37Google Scholar
[65] Bormashov V S, Tarelkin S A, Buga S G, Kuznetsov M S, Terentiev S A, Semenov A N, Blank V N 2013 Diamond Relat. Mater. 35 19Google Scholar
[66] Ma L Q, Ma H A, Xiao H Y, Li S S, Li Y, Jia X P 2010 Chin. Sci. Bull. 55 677Google Scholar
[67] 肖宏宇, 李尚升, 秦玉琨, 梁中翥, 张永胜, 张东梅, 张义顺 2014 63 198101Google Scholar
Xiao H Y, Li S S, Qin Y K, Liang Z Z, Zhang Y S, Zhang D M, Zhang Y S 2014 Acta Phys. Sin. 63 198101Google Scholar
[68] Howell D, Collins A T, Loudin L C, Diggle P L, D'Haenens-Johanssonf U F S, Smit K V, Katrusha A N, Butler J E, Nestola F 2019 Diamond Relat. Mater. 96 207Google Scholar
[69] 肖宏宇, 刘利娜, 秦玉琨, 张东梅, 张永胜, 隋永明, 梁中翥 2016 65 050701
Xiao H Y, Liu L N, Qin Y K, Zhang D M, Zhang Y S, Sui Y M, Liang Z Z 2016 Acta Phys. Sin. 65 050701
[70] Dai Y, Long R, Huang B B, Zhang Z K 2007 Diamond Relat. Mater. 16 353Google Scholar
[71] Palyanov Y N, BorzdovY M, Khokhryakov A F, Kupriyanov I N, Sokol A G 2010 Cryst. Growth Des. 10 3169Google Scholar
[72] Huang G F, Jia X P, Li S S, Zhang Y F, Li Y, Zhao M, Ma H A 2010 Chin. Phys. B 19 118101Google Scholar
[73] Wang J Z, Li S S, Hu M H, Su T C, Gao G J, Guo M M, You Y, Nie Y 2020 Int. J. Refract. Met. Hard Mater. 87 105150Google Scholar
[74] Kalish R 2001 Diamond Relat. Mater. 10 1749Google Scholar
[75] Zhimulev E I, Sonin V M, Mironov A M, Chepurov A I 2016 Geochem. Int. 54 415Google Scholar
[76] Fang S, Ma H A, Cai Z H, Chun X, Wang C X, Fang C, Zhao Z D, Lu Z Y, Wang Y K, Chen L C, Jia X P 2020 CrystEngComm 22 602Google Scholar
[77] Chen N, Ma H A, Chen L X, Yan B M, Fang C, Liu X B, Li Y D, Guo L S, Chen L C, Jia X P 2018 Int. J. Refract. Met. Hard Mater. 71 141Google Scholar
[78] Zhang H, Li S S, Su T C, Hu M H, Li G H, Ma H A, JiaX P 2016 Chin. Phys. B 25 118104Google Scholar
[79] Wan J K, Li S S, Gui J L, Feng L, Yu H, Su T C, Hu M H, Yu K P, Han F, Ma H A, Jia X P 2019 Int. J. Refract. Met. Hard Mater. 81 100Google Scholar
[80] Wan J K, Li S S, Wang N, Liu H J, Su T C, Hu M H, Yu K P, Han F, Ma H A 2019 Chin. Phys. Lett. 36 046101Google Scholar
[81] Tang L, Yue R F, Wang Y 2018 Carbon 130 458Google Scholar
[82] Zhang H, Li S S, Li G H, Su T C, Hu M H, Ma H A, Jia X P, Li Y 2017 Int. J. Refract. Met. Hard Mater. 66 26Google Scholar
[83] Gong C S, Li S S, Zhang H R, Su T C, Hu M H, Ma H A, Jia X P, Li Y 2017 Int. J. Refract. Met. Hard Mater. 66 116Google Scholar
[84] Yu K P, Li S S, Yang q, Leng K Q, Hu M H, Su T C, Guo M M, Gao G J, Wang J Z, You Y 2019 Cryst. Eng. Comm. 21 6810Google Scholar
[85] Yan B M, Jia X P, Fang C, Chen N, Li Y D, Sun S S, Ma H A 2016 Int. J. Refract. Met. Hard Mater. 54 309Google Scholar
[86] Yan B M, Jia X P, Sun S S, Zhou X Z, Fang C, Chen N, Li Y D, Li Y, Ma H A 2015 Int. J. Refract. Met. Hard Mater. 48 56Google Scholar
[87] Sun S S, Cui W, Jia X P, Ma H A, Lv J 2016 Int. J. Refract. Met. Hard Mater. 59 56Google Scholar
[88] Hu M H, Bi N, Li S S, Su T C, Hu Q, Ma H A, Jia X P 2017 CrystEngComm 19 4571Google Scholar
[89] Liu X B, Chen X, Singh D J, Stern R A, Wu J, Petitgirard S, Bina C R, Jacobsen S D 2019 Proc. Natl. Acad. Sci. 116 7703Google Scholar
-
图 10 样品腔体组装图(左半部分)和腔体温度分布图及放大图(右半部分)[57] (a) 传统CHPA样品腔体组装图; (b) 新型CHPA样品腔体组装图
Figure 10. Plots of the sample cell assembly (in the left half) and the distributions of cell temperature as well as the enlarged figure (in the right half) [57]: (a) The sample cell assembly used for the conventional CHPA; (b) the sample cell assembly used for the novel CHPA.
图 14 金刚石中B-O杂质态理论 (a) B3O和(b)B4O化合物的优化结构(左上)和电子定位功能等值面(左下). 为了清楚起见, 仅示出结构图中的B和O原子相邻的C原子. 蓝色、红色和黑色球体分别对应于B, O和C原子. B3O和B4O金刚石的计算带结构和PDOS分别在右侧图中显示[89]
Figure 14. Theoretical results of B-O impurity states in diamond. Optimized structures (upper left) and electron localization function isosurfaces (lower left) for (a) B3O and (b) B4O complexes. Only the C atoms adjacent to the B and O atoms in the structure pictures are illustrated for clarity. The blue, red, and black spheres correspond to B, O, and C atoms, respectively. The calculated band structures and PDOS for B3O and B4O diamond are shown in right, respectively[89].
表 1 不同触媒和除氮剂组合的使用效果
Table 1. Effect of different catalysts and nitrogen getter.
表 2 金刚石不同掺杂元素电学性能
Table 2. Electrical properties of different doped elements in diamond.
-
[1] Kiflawi I, Bruley J 2000 Diamond Relat. Mater. 9 87Google Scholar
[2] 龚春生, 李尚升, 张贺 2016 材料导报 30 36Google Scholar
Gong C S, Li S S, Zhang H 2016 Mater. Rev. 30 36Google Scholar
[3] 唐敬友, 董庆东, 谷岩 2000 金刚石与磨料磨具工程 03 24Google Scholar
Tang J Y, Dong Q D, Gu Y 2000 Diamond Abras. Eng. 03 24Google Scholar
[4] 胡美华, 马红安, 颜丙敏, 张壮飞, 李勇, 周振翔, 秦杰明, 贾晓鹏 2012 61 078102Google Scholar
Hu M H, Ma H A, Yan B M, Zhang Z F, Li Y, Zhou Z X, Qin J M, Jia X P 2012 Acta Phys. Sin. 61 078102Google Scholar
[5] 满卫东, 吕继磊, 吴宇琼, 陈朋, 朱金凤, 董维 2010 宝石和宝石学杂志 12 6Google Scholar
Man W D, Lv J L, Wu Y Q, Chen P, Zhu J F, Dong W 2010 J. Gems Gemmol. 12 6Google Scholar
[6] Mankelevich Y A, May P W 2008 Diamond Relat. Mater. 17 1021Google Scholar
[7] Chrenko R M, Strong H M, Tuft R E 1971 Philos. Mag. A 23 313Google Scholar
[8] Kanda H, Akaishi M, Yamaoka S 1999 Diamond Relat. Mater. 8 1441Google Scholar
[9] Sumiya H, Harano K, Tamasaku K 2015 Diamond Relat. Mater. 58 221Google Scholar
[10] Demlow S N, Rechenberg R, Grotjohn T 2014 Diamond Relat. Mater. 49 19Google Scholar
[11] Stefanova A, Ayata S, Erema A, Ernst S, Baltruschat H 2013 Electrochim. Acta 110 560Google Scholar
[12] Blank V D, Kuznetsov M S, Nosukhin S A, Terentiev S A, Denisov V N 2007 Diamond Relat. Mater. 16 800Google Scholar
[13] Grotjohn T A, Tran D T, Yaran M K, Demlow S N, Schuelke T 2014 Diamond Relat. Mater. 44 129Google Scholar
[14] 李尚升, 马红安, 臧传义, 田宇, 张亚飞, 肖宏宇, 尹斌华, 贾晓鹏 2006 金刚石与磨料磨具工程 152 16Google Scholar
Li S S, Ma H A, Zang C Y, Tian Y, Zhang Y F, Xiao H Y, Yin B H, Jia X P 2006 Diamond Abras. Eng. 152 16Google Scholar
[15] Li S S, Zhang H, Su T C, Hu Q, Hu M H, Gong C S, Ma H A, Jia X P, Li Y, Xiao H Y 2017 Chin. Phys. B 26 068102Google Scholar
[16] Zhang H, Li S S, Su T C, Hu M H, Ma H A, Jia X P, Li Y 2017 Chin. Phys. B 26 058102Google Scholar
[17] 罗宁, 李尚升, 贾晓鹏 2012 金刚石与磨料磨具工程 32 15Google Scholar
Luo N, Li S S, Jia X P 2012 Diamond Abras. Eng. 32 15Google Scholar
[18] 熊礼威, 汪建华, 满卫东, 刘长林, 翁俊 2010 材料导报 24 117Google Scholar
Xiong L W, Wang J H, Man W D, Li C L, Weng J 2010 Mater. Rev. 24 117Google Scholar
[19] Chevallier J, Ballutaud D, Bertrand T, Jomard F, Deneuville A, Etienne G, Pruvost F 1999 Phys. Status Solidi A 174 73Google Scholar
[20] Wentorf R H 1971 J. Phys. Chem. 75 1833Google Scholar
[21] 肖宏宇, 苏剑峰, 张永胜, 鲍志刚 2012 61 248101Google Scholar
Xiao H Y, Su J F, Zhang Y S, Bao Z G 2012 Acta Phys. Sin. 61 248101Google Scholar
[22] 张聪, 韩奇钢, 马红安, 肖宏宇, 李瑞, 李战厂, 田宇, 贾晓鹏 2010 59 1923Google Scholar
Zhang C, Han Q G, Ma H A, Xiao H Y, Li R, Li Z C, Jia X P 2010 Acta Phys. Sin. 59 1923Google Scholar
[23] Li Z C, Jia X P, Huang G F, Hu M H, Li Y, Yan B M, Ma H A 2013 Chin. Phys. B 22 014701Google Scholar
[24] Hu M H, Li S S, Ma H A, Su T C, Li X L, Hu Q, Ji X P 2012 Chin. Phys. B 21 098101Google Scholar
[25] Li Y D, Jia X P, Yan B M, Chen N, Fang C, Li Y, Sun S S, Ma H A 2016 RSC Adv. 6 40330Google Scholar
[26] 肖宏宇, 秦玉琨, 刘利娜, 鲍志刚, 唐春娟, 孙瑞瑞, 张永胜, 李尚升, 贾晓鹏 2018 67 140702Google Scholar
Xiao H Y, Qin Y K, Li L N, Bao Z G, Tang C J, Sun R R, Zhang Y S, Li S S, Jia X P 2018 Acta Phys. Sin. 67 140702Google Scholar
[27] Sumiya H, Toda N, Satoh S 2002 J. Cryst. Growth 237 1281Google Scholar
[28] Kiflawi I, Kanda H, Lawson S C 2002 Diamond Relat. Mater. 11 204Google Scholar
[29] Reutsky V N, Borzdov Y M, Palyanov Y N 2012 Diamond Relat. Mater. 21 7Google Scholar
[30] Tian Y, Ma H A, Li S S, Xiao H Y, Zhang Y F, Huang G F, Ma L Q, Jia X P 2007 Chin. Phys. Lett. 24 2115Google Scholar
[31] 肖宏宇, 秦玉琨, 隋永明, 梁中翥, 刘利娜, 张永胜 2016 65 070705Google Scholar
Xiao H Y, Qin Y K, Sui Y M, Liang Z Z, Liu L N, Zhang Y S 2016 Acta Phys. Sin. 65 070705Google Scholar
[32] 秦玉琨, 肖宏宇, 刘利娜, 孙瑞瑞, 胡秋波, 鲍志刚, 张永胜, 李尚升, 贾晓鹏 2019 68 020701Google Scholar
Qin Y K, Xiao H Y, Liu L N, Sun R R, Hu Q B, Bao Z G, Zhang Y S, Li S S, Jia X P 2019 Acta Phys. Sin. 68 020701Google Scholar
[33] 张恒涛, 肖长江, 尚秋元, 栗正新, 朱玲艳 2013 材料导报 27 65Google Scholar
Zhang H T, Xiao C J, Shang Q Y, Li Z X, Zhu L Y 2013 Mater. Rev. 27 65Google Scholar
[34] Sumiya H, Toda N, Satoh S 2005 Sei. Tech. Rev. 60 10
[35] Abbaschian R, Zhu H, Clarke C 2005 Diamond Relat. Mater. 14 1916Google Scholar
[36] Xiao H Y, Jia X P, Zang C Y, Li S S, Tian Y, Zhang Y F, Huang G F, Ma L Q, Ma H A 2008 Chin. Phys. Lett. 25 1469Google Scholar
[37] 王君卓, 李尚升, 宿太超, 胡美华, 胡强, 吴玉敏, 王健康, 韩飞, 于昆鹏, 高广进, 郭明明, 贾晓鹏, 马红安, 肖宏宇 2018 67 168101Google Scholar
Wang J Z, Li S S, Su T C, Hu M H, Hu Q, Wu Y M, Wang J K, Han F, Yu K P, Gao G J, Guo M M, Jia X P, Ma H A, Xiao H Y 2018 Acta Phys. Sin. 67 168101Google Scholar
[38] Chrenko R M, Tuft R E, Strong H M 1977 Nature 270 141Google Scholar
[39] Chepurov A A, Dereppe J M, Fedorov I I, Chepurov A I 2000 Diamond Relat. Mater. 9 1374Google Scholar
[40] Evans T, Qi Z 1982 Proc. R. Soc. A 381 159Google Scholar
[41] Mainwood A 1994 Phys. Rev. B 49 7934Google Scholar
[42] Kanda H, Akaishi M, Setaka N, Yamaoka S, Fukunaga O 1980 J. Mater. Sci. 15 2743Google Scholar
[43] Zang C Y, Huang G F, Ma H A, Jia X P 2007 Chin. Phys. Lett. 24 2991Google Scholar
[44] 张贺, 李尚升, 宿太超, 胡美华, 周佑默, 樊浩天, 龚春生, 贾晓鹏, 马红安, 肖宏宇 2015 64 198103Google Scholar
Zhang H, Li S S, Su T C, Hu M H, Zhou Y M, Fan H T, Gong C S, Jia X P, Ma H A, Xiao H Y 2015 Acta Phys. Sin. 64 198103Google Scholar
[45] Beha K, Batalov A, Manson N B, Bratschitsch R, Leitenstorfer A 2012 Phys. Rev. Lett. 109 097404Google Scholar
[46] 董杨, 杜博, 张少春, 陈向东, 孙方稳 2018 67 160301Google Scholar
Dong Y, Du B, Zhang S C, Chen S C, Sun F W 2018 Acta Phys. Sin. 67 160301Google Scholar
[47] Chen L C, Miao X Y, Ma H A, Guo L S, Chen L X, Wang Z K, Yang Z Q, Jia X P 2018 CrystEngComm 20 7164Google Scholar
[48] Chen N, Ma H A, Yan B M, Chen L C, Chen L X, Guo L S, Miao X Y, Fang C, Jia X P 2018 Cryst. Growth Des. 18 3870Google Scholar
[49] Han F, Li S S, Jia X F, Chen W Q, Su T C, Hu M H, Yu K P, Wang J K, WuY M, Ma H A, Jia X P 2019 Chin. Phys. B 28 028103Google Scholar
[50] Tatsumi N, Tamasaku K, Ito T, Sumiya H 2017 J. Cryst. Growth 458 27
[51] Masuya S, Hanada K, Oshima T, Sumiya H, Kasu M 2017 Diamond Relat. Mater. 75 155Google Scholar
[52] 臧传义, 马红安, 黄国峰, 贾晓鹏 2007 人工晶体学报 36 536Google Scholar
Zang C Y, Ma H A, Huang G F, Jia X P 2007 J. Synthetic Cryst. 36 536Google Scholar
[53] 臧传义, 马红安, 黄国锋, 贾晓鹏 2007 吉林大学学报: 工学版 37 1097
Zang C Y, Ma H A, Huang G F, Jia X P 2007 J. Jilin Univ: Technol. Ed. 37 1097
[54] Zang C Y, Chen X Z, Hu Q, Ma H A, Jia X P 2009 Chin. Sci. Bull. 54 2535Google Scholar
[55] 黄国锋, 臧传义, 马红安, 李尚升, 田宇, 肖宏宇, 张亚飞, 马利秋, 李勇, 陈孝洲, 贾晓鹏 2008 超硬材料工程 20 9Google Scholar
Huang G F, Zang C Y, Ma H A, Li S S, Tian Y, Xiao H Y, Zhang Y F, Ma L Q, Li Y, Chen X Z, Jiao X P 2008 Superhard Mater. Eng. 20 9Google Scholar
[56] 胡美华, 毕宁, 李尚升, 宿太超, 李小雷, 胡强, 贾晓鹏, 马红安 2013 62 188103
Hu M H, Bi N, Li S S, Su T C, Li X L, Hu Q, Jia X P, Ma H A 2013 Acta Phys. Sin. 62 188103
[57] Han Q G, Ban Q C, Zhu P W 2015 J. Cryst. Growth 422 29Google Scholar
[58] Li S S, Li X L, Ma H A, Su TC, Xiao H Y, Huang G F, Li Y, Zhang Y S, Jia X P 2011 Chin. Phys. Lett. 28 68101Google Scholar
[59] Wang X C, Ma H A, Zang C Y, Tian Y, Li S S, Jia X P 2005 Chin. Phys. Lett. 22 1800Google Scholar
[60] Li S S, Jia X P, Zang C Y, Tian Y, Zang Y F, Xiao H Y, Huang G F, Ma L Q, Li Y, Li X L, Ma H A 2008 Chin. Phys. Lett. 25 3801Google Scholar
[61] Lysakovskii V V, Ivakhnenko S A 2009 J. Superhard Mater. 31 7Google Scholar
[62] Guo M M, Li S S, Hu M H, Su T C, Wang J Z, Gao G J, You Y, Nie Y 2020 Chin. Phys. B 29 018101Google Scholar
[63] 李尚升, 张曙光, 李小雷, 宿太超, 肖宏宇, 黄国锋, 李勇, 马红安, 贾晓鹏 2011 功能材料 42 58
Li S S, Zhang S G, Li X L, Su T C, Xiao H Y, Huang G F, Li Y, Ma H A, Jia X P 2011 J. Funct. Mater. 42 58
[64] Li S S, Gong C S, Su T C, Hu M H, Zhang H, Ma H A, Jia X P 2017 Int. J. Refract. Met. Hard Mater. 62 37Google Scholar
[65] Bormashov V S, Tarelkin S A, Buga S G, Kuznetsov M S, Terentiev S A, Semenov A N, Blank V N 2013 Diamond Relat. Mater. 35 19Google Scholar
[66] Ma L Q, Ma H A, Xiao H Y, Li S S, Li Y, Jia X P 2010 Chin. Sci. Bull. 55 677Google Scholar
[67] 肖宏宇, 李尚升, 秦玉琨, 梁中翥, 张永胜, 张东梅, 张义顺 2014 63 198101Google Scholar
Xiao H Y, Li S S, Qin Y K, Liang Z Z, Zhang Y S, Zhang D M, Zhang Y S 2014 Acta Phys. Sin. 63 198101Google Scholar
[68] Howell D, Collins A T, Loudin L C, Diggle P L, D'Haenens-Johanssonf U F S, Smit K V, Katrusha A N, Butler J E, Nestola F 2019 Diamond Relat. Mater. 96 207Google Scholar
[69] 肖宏宇, 刘利娜, 秦玉琨, 张东梅, 张永胜, 隋永明, 梁中翥 2016 65 050701
Xiao H Y, Liu L N, Qin Y K, Zhang D M, Zhang Y S, Sui Y M, Liang Z Z 2016 Acta Phys. Sin. 65 050701
[70] Dai Y, Long R, Huang B B, Zhang Z K 2007 Diamond Relat. Mater. 16 353Google Scholar
[71] Palyanov Y N, BorzdovY M, Khokhryakov A F, Kupriyanov I N, Sokol A G 2010 Cryst. Growth Des. 10 3169Google Scholar
[72] Huang G F, Jia X P, Li S S, Zhang Y F, Li Y, Zhao M, Ma H A 2010 Chin. Phys. B 19 118101Google Scholar
[73] Wang J Z, Li S S, Hu M H, Su T C, Gao G J, Guo M M, You Y, Nie Y 2020 Int. J. Refract. Met. Hard Mater. 87 105150Google Scholar
[74] Kalish R 2001 Diamond Relat. Mater. 10 1749Google Scholar
[75] Zhimulev E I, Sonin V M, Mironov A M, Chepurov A I 2016 Geochem. Int. 54 415Google Scholar
[76] Fang S, Ma H A, Cai Z H, Chun X, Wang C X, Fang C, Zhao Z D, Lu Z Y, Wang Y K, Chen L C, Jia X P 2020 CrystEngComm 22 602Google Scholar
[77] Chen N, Ma H A, Chen L X, Yan B M, Fang C, Liu X B, Li Y D, Guo L S, Chen L C, Jia X P 2018 Int. J. Refract. Met. Hard Mater. 71 141Google Scholar
[78] Zhang H, Li S S, Su T C, Hu M H, Li G H, Ma H A, JiaX P 2016 Chin. Phys. B 25 118104Google Scholar
[79] Wan J K, Li S S, Gui J L, Feng L, Yu H, Su T C, Hu M H, Yu K P, Han F, Ma H A, Jia X P 2019 Int. J. Refract. Met. Hard Mater. 81 100Google Scholar
[80] Wan J K, Li S S, Wang N, Liu H J, Su T C, Hu M H, Yu K P, Han F, Ma H A 2019 Chin. Phys. Lett. 36 046101Google Scholar
[81] Tang L, Yue R F, Wang Y 2018 Carbon 130 458Google Scholar
[82] Zhang H, Li S S, Li G H, Su T C, Hu M H, Ma H A, Jia X P, Li Y 2017 Int. J. Refract. Met. Hard Mater. 66 26Google Scholar
[83] Gong C S, Li S S, Zhang H R, Su T C, Hu M H, Ma H A, Jia X P, Li Y 2017 Int. J. Refract. Met. Hard Mater. 66 116Google Scholar
[84] Yu K P, Li S S, Yang q, Leng K Q, Hu M H, Su T C, Guo M M, Gao G J, Wang J Z, You Y 2019 Cryst. Eng. Comm. 21 6810Google Scholar
[85] Yan B M, Jia X P, Fang C, Chen N, Li Y D, Sun S S, Ma H A 2016 Int. J. Refract. Met. Hard Mater. 54 309Google Scholar
[86] Yan B M, Jia X P, Sun S S, Zhou X Z, Fang C, Chen N, Li Y D, Li Y, Ma H A 2015 Int. J. Refract. Met. Hard Mater. 48 56Google Scholar
[87] Sun S S, Cui W, Jia X P, Ma H A, Lv J 2016 Int. J. Refract. Met. Hard Mater. 59 56Google Scholar
[88] Hu M H, Bi N, Li S S, Su T C, Hu Q, Ma H A, Jia X P 2017 CrystEngComm 19 4571Google Scholar
[89] Liu X B, Chen X, Singh D J, Stern R A, Wu J, Petitgirard S, Bina C R, Jacobsen S D 2019 Proc. Natl. Acad. Sci. 116 7703Google Scholar
Catalog
Metrics
- Abstract views: 13732
- PDF Downloads: 455
- Cited By: 0