-
In the paper, under 5.8 GPa and 1300 ℃, the Li3N doped diamond single crystals were synthesized in a cubic anvil high pressure and high temperature apparatus. Firstly, Fe59Ni25Co16 alloy was used as the catalyst, high-purity Li3N powder was used as the additive, industrial high-purity graphite powder was used as the carbon source, and the (100) crystal orientation of industrial grade diamond single crystal with good crystalline quality was used as the growth direction of diamond single crystal, the effect of Li3N addition ratio on the growth of diamond single crystals was systematically investigated with a growth time of 20 h. The research results indicate that with the increase of Li3N addition ratio, the color of diamond single crystals gradually transitions from yellow green, green, and dark green to dark green, and their morphology gradually transitions from hexahedron, hexahedron to octahedron. Moreover, the growth rate of single crystals decreases with the gradual increase of Li3N addition ratio, which can be attributed to the phenomenon of upward movement in the “V-shaped region” of diamond single crystal growth with the gradual increase of Li3N addition ratio in the P-T phase diagram of carbon. Secondly, using Fourier transform infrared (FTIR) spectroscopy, it was revealed that the nitrogen content of diamond single crystals increases with the increase of Li3N addition ratio, and increasing the diamond growth pressure can achieve the increase in the nitrogen content of diamond single crystals.
Fig. 5 shows FTIR spectra of diamond crystals synthesized under different Li3N addition ratios. When the weight percent of Li3N added to the catalyst is 0.55%, the nitrogen content of the grown diamond single crystal is 8.92×10–4. Thirdly, Raman spectroscopy testing revealed that the Raman characteristic peak of diamond single crystals gradually shifts towards the low-energy end with the increase of Li3N addition ratio, which is related to the increase of internal stress in diamond single crystals. Finally, the PL spectroscopy test results showed that this study achieved high temperature and high pressure preparation of diamond single crystals with NV– color centers, and the zero phonon line intensity of NV– color centers in the single crystals significantly decreased with the increase of crystal nitrogen content.Fig. 7 shows PL spectra of diamond crystals synthesized under different Li3N addition ratios.-
Keywords:
- high temperature and high pressure /
- diamond single crystals /
- catalyst /
- Li3N
-
图 1 金刚石单晶的生长组装示意图. ①叶蜡石块; ②白云石衬管; ③触媒合金; ④金刚石单晶; ⑤导电钢帽; ⑥石墨加热管; ⑦碳素源; ⑧晶体生长容器; ⑨晶种; ⑩导电紫铜片
Figure 1. Sample assembly to treat synthesis diamond single crystals. ① Synthetic block of pyrophyllite; ② dolomite lining tube; ③ catalyst alloy; ④ diamond single crystal; ⑤ conductive steel cap; ⑥ graphite heating tube; ⑦ carbon source; ⑧ crystal growth container; ⑨ seed crystals; ⑩ conductive copper sheet.
图 4 不同压力及Li3N添加比例下生长金刚石单晶的光学显微照片 (a)5.8 GPa, 0.60%; (b) 5.6 GPa, 0.07%; (c) 5.6 GPa, 0.08%
Figure 4. Optical micrographs of diamond single crystals grown under different pressures and Li3N addition ratios: (a) Under 5.8 GPa, for 0.60% Li3N; (b) under 5.6 GPa, for 0.07% Li3N; (c) under 5.6 GPa, for 0.08% Li3N.
表 1 Li3N添加金刚石单晶的生长条件及晶体品质特征
Table 1. Growth conditions and crystal quality of Li3N doped diamond single crystals.
样品 压力
/GPa温度
/℃Li3N添加比例
/%生长速度
/(mg·h–1)晶体品质 S1 5.8 1300 0.25 1.85 六面体, 无包裹体及表面凹坑 (图2(a)) S2 5.8 1300 0.35 1.65 六-八面体, 少量包裹体, 无表面凹坑(图2(b)) S3 5.8 1300 0.45 1.36 近八面体, 无包裹体及表面凹坑 (图2(c)) S4 5.8 1300 0.55 0.89 八面体, 无包裹体及表面凹坑 (图2(d)) S5 5.8 1300 0.60 0.27 八面体, 表面存在沟壑状缺陷 (图4(a)) S6 5.6 1300 0.07 0.15 六八面体, 晶种附近较多包裹体 (图4(b)) S7 5.6 1300 0.08 0.09 六面体, 边缘出现较大尺寸孪晶 (图4(c)) 表 2 Li3N添加金刚石单晶的氮含量
Table 2. Nitrogen contents of Li3N doped diamond single crystals.
序号 Li3N添加质量
含量/%C心N含量
NC/×10–6金刚石样品 a 0.07 356 S6 b 0.25 493 S1 c 0.35 616 S2 d 0.45 770 S3 e 0.55 892 S4 表 3 Li3N添加金刚石单晶的内应力σh
Table 3. Internal stress of Li3N doped diamond single crystals.
序号 拉曼峰值/cm–1 △γ/cm–1 内应力σh/MPa a 1330.92 1.08 375 b 1330.81 1.19 413 c 1330.77 1.23 427 e 1330.50 1.50 521 -
[1] Bovenkerk H P, Bundy F P, Hall H T, Strong H M, Wentorf Jr R H 1959 Nature 184 1094
Google Scholar
[2] Li Y, Liao J H, Wang Y, She Y C, Xiao Z G, An J 2020 Opt. Mater. 101 109735
Google Scholar
[3] Ma Y M, Eremets M, Oganov A R, Xie Y, Trojan, Medvedev S 2009 Nature 458 182
Google Scholar
[4] Liu X B, Chen X, Singh D J, Stern R A, Wu J S, Petitgirard S, Bina C R, Jacobsen S D 2019 Proc. Natl. Acad. Sci. U. S A. 116 7703
Google Scholar
[5] Li Y, Chen X Z, Ran M W, She Y C, Xiao Z G, Hu M H, Wang Y, An J 2022 Chin. Phys. B 31 046107
Google Scholar
[6] Borzdov Y, Pal’yanov Y, Kupriyanov I, Gusev V, Khokhryakov A, Sokol A, Efremov A 2002 Diamond Relat. Mater. 11 1863
Google Scholar
[7] Ralchenko V, Sedov V, Martyanov A, Voronov V, Savin S, Khomich A 2022 Carbon 190 10
Google Scholar
[8] 肖宏宇, 秦玉琨, 刘利娜, 鲍志刚, 唐春娟, 孙瑞瑞, 张永胜, 李尚升, 贾晓鹏 2018 67 140702
Google Scholar
Xiao H Y, Qin Y K, Liu L N, Bao Z G, Tang C J, Sun R R, Zhang Y S, Li S S, Jia X P 2018 Acta Phys. Sin. 67 140702
Google Scholar
[9] 肖宏宇, 李勇, 鲍志刚, 佘彦超, 王应, 李尚升 2023 72 020701
Google Scholar
Xiao H Y, Li Y, Bao Z G, She Y C, Wang Y, Li S S 2023 Acta Phys. Sin. 72 020701
Google Scholar
[10] Li Y, Wang S, Xiao H Y, Wang Q, Xiao Z G, She Y C, Wang Y 2024 CrystEngComm 26 2190
Google Scholar
[11] Yelisseyev A P, Zhimulev E I, Karpovich Z A, Chepurov A A, Sonin V M, Chepurov A I 2022 Crys EngComm 24 4408
[12] Razgulov A A, Lyapin S G, Novikov A P, Ekimov E A 2021 Diamond Relat. Mater. 116 108379
Google Scholar
[13] Bogdanov K V, Zhukovskaya M V, Osipov V Y, Ushakova E V, Baranov M A, Takai K, Rampersaud A, Baranov A V 2018 APL Mater. 6 086104
Google Scholar
[14] Li M, Wang Z W, Teng Y, Zhao H Y, Li B W, Liu Y, Wang S X, Yang Z Z, Chen L C, Ma H A, Jia X P 2024 Diamond Relat. Mater. 141 110605
Google Scholar
[15] Wang W H, Fang C, Chen L C, Zhang Z F, Zhang Y W, Wang Q Q, Biao W, Yang X, Ren W, Jia X P 2024 Diamond Relat. Mater. 142 110863
Google Scholar
[16] Liu Y, Wang Z W, Teng Y, Li B W, Zhao H Y, Guo Q Y, Chen L C, Ma H A, Jia X P 2023 Int. J. Refract. Me. Hard Mater. 118 106488
[17] Nie Y, Li S S, Hu Q, Wang J Z, Hu M H, Su T C, Huang G F, Li Z C, Li Y, Xiao H Y 2023 Opt. Mater. 137 113538
Google Scholar
[18] Catledge S A, Vohra Y K, Ladi R, Rai G 1996 Diamond Relat. Mater. 5 1159
Google Scholar
[19] 肖宏宇, 李勇, 田昌海, 张蔚曦, 王强, 肖政国, 王应, 金慧, 鲍志刚, 周振翔 2024 人工晶体学报 53 959
Google Scholar
Xiao H Y, Li Y, Tian C H, Zhang W X, Wang Q, Xiao Z G, Wang Y, Jin H, Bao Z G, Zhou Z X 2024 J. Synth. Cryst. 53 959
Google Scholar
[20] Capelli M, Heffernan A H, Ohshim T, Abe H, Jeske J, Hope A, Greentree A D, Reineck P, Gibson B C 2019 Carbon 143 714
Google Scholar
[21] Sedova V, Martyanov A, Savin S, Bolshakov A, Bushuev E, Khomich A, Kudryavtsev O, Krivobok V, Nikolaev S, Ralchenko V 2018 Diamond Relat. Mater. 90 47
Google Scholar
[22] Glinka Y D, Lin K W, Chang H C, Lin S H 1999 J. Phys. Chem. B 103 4251
Google Scholar
[23] Moussa J E, Marom N, Sai N, Chelikowsky J R 2012 Phys. Rev. Lett. 108 226404
Google Scholar
Metrics
- Abstract views: 312
- PDF Downloads: 12
- Cited By: 0