Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on the growth of Li3N doped diamond single crystals under HPHT

XIAO Hongyu WANG Shuai KANG Ruwei LI Yong LI Shangsheng TIAN Changhai WANG Qiang JIN Hui MA Hongan

Citation:

Study on the growth of Li3N doped diamond single crystals under HPHT

XIAO Hongyu, WANG Shuai, KANG Ruwei, LI Yong, LI Shangsheng, TIAN Changhai, WANG Qiang, JIN Hui, MA Hongan
cstr: 32037.14.aps.74.20241769
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In the paper, under 5.8 GPa and 1300 ℃, the Li3N doped diamond single crystals were synthesized in a cubic anvil high pressure and high temperature apparatus. Firstly, Fe59Ni25Co16 alloy was used as the catalyst, high-purity Li3N powder was used as the additive, industrial high-purity graphite powder was used as the carbon source, and the (100) crystal orientation of industrial grade diamond single crystal with good crystalline quality was used as the growth direction of diamond single crystal, the effect of Li3N addition ratio on the growth of diamond single crystals was systematically investigated with a growth time of 20 h. The research results indicate that with the increase of Li3N addition ratio, the color of diamond single crystals gradually transitions from yellow green, green, and dark green to dark green, and their morphology gradually transitions from hexahedron, hexahedron to octahedron. Moreover, the growth rate of single crystals decreases with the gradual increase of Li3N addition ratio, which can be attributed to the phenomenon of upward movement in the “V-shaped region” of diamond single crystal growth with the gradual increase of Li3N addition ratio in the P-T phase diagram of carbon. Secondly, using Fourier transform infrared (FTIR) spectroscopy, it was revealed that the nitrogen content of diamond single crystals increases with the increase of Li3N addition ratio, and increasing the diamond growth pressure can achieve the increase in the nitrogen content of diamond single crystals. Figure 5 shows FTIR spectra of diamond crystals synthesized under different Li3N addition ratios. When the weight percent of Li3N added to the catalyst is 0.55%, the nitrogen content of the grown diamond single crystal is 8.92×10–4. Thirdly, Raman spectroscopy testing revealed that the Raman characteristic peak of diamond single crystals gradually shifts towards the low-energy end with the increase of Li3N addition ratio, which is related to the increase of internal stress in diamond single crystals. Finally, the PL spectroscopy test results showed that this study achieved high temperature and high pressure preparation of diamond single crystals with NV color centers, and the zero phonon line intensity of NV color centers in the single crystals significantly decreased with the increase of crystal nitrogen content. Figure 7 shows PL spectra of diamond crystals synthesized under different Li3N addition ratios.
      Corresponding author: XIAO Hongyu, xiaohy0205@163.com ; MA Hongan, maha@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12064038), the Natural Science Program of Guizhou Province, China (Grant Nos. Qiankehejichu ZK[2023]467, ZK[2021]021), the Foundation for Excellent Scholars of Guizhou Province, China (Grant No. GCCC[2023]087), the Key Science and Technology Program of Henan Province, China (Grant No. 232102231048), and the Staring Foundation of Scientific Research of Tongren University, China (Grant No. trxyDH2221).
    [1]

    Bovenkerk H P, Bundy F P, Hall H T, Strong H M, Wentorf Jr R H 1959 Nature 184 1094Google Scholar

    [2]

    Li Y, Liao J H, Wang Y, She Y C, Xiao Z G, An J 2020 Opt. Mater. 101 109735Google Scholar

    [3]

    Ma Y M, Eremets M, Oganov A R, Xie Y, Trojan, Medvedev S 2009 Nature 458 182Google Scholar

    [4]

    Liu X B, Chen X, Singh D J, Stern R A, Wu J S, Petitgirard S, Bina C R, Jacobsen S D 2019 Proc. Natl. Acad. Sci. U. S A. 116 7703Google Scholar

    [5]

    Li Y, Chen X Z, Ran M W, She Y C, Xiao Z G, Hu M H, Wang Y, An J 2022 Chin. Phys. B 31 046107Google Scholar

    [6]

    Borzdov Y, Pal’yanov Y, Kupriyanov I, Gusev V, Khokhryakov A, Sokol A, Efremov A 2002 Diamond Relat. Mater. 11 1863Google Scholar

    [7]

    Ralchenko V, Sedov V, Martyanov A, Voronov V, Savin S, Khomich A 2022 Carbon 190 10Google Scholar

    [8]

    肖宏宇, 秦玉琨, 刘利娜, 鲍志刚, 唐春娟, 孙瑞瑞, 张永胜, 李尚升, 贾晓鹏 2018 67 140702Google Scholar

    Xiao H Y, Qin Y K, Liu L N, Bao Z G, Tang C J, Sun R R, Zhang Y S, Li S S, Jia X P 2018 Acta Phys. Sin. 67 140702Google Scholar

    [9]

    肖宏宇, 李勇, 鲍志刚, 佘彦超, 王应, 李尚升 2023 72 020701Google Scholar

    Xiao H Y, Li Y, Bao Z G, She Y C, Wang Y, Li S S 2023 Acta Phys. Sin. 72 020701Google Scholar

    [10]

    Li Y, Wang S, Xiao H Y, Wang Q, Xiao Z G, She Y C, Wang Y 2024 CrystEngComm 26 2190Google Scholar

    [11]

    Yelisseyev A P, Zhimulev E I, Karpovich Z A, Chepurov A A, Sonin V M, Chepurov A I 2022 CrystEngComm 24 4408Google Scholar

    [12]

    Razgulov A A, Lyapin S G, Novikov A P, Ekimov E A 2021 Diamond Relat. Mater. 116 108379Google Scholar

    [13]

    Bogdanov K V, Zhukovskaya M V, Osipov V Y, Ushakova E V, Baranov M A, Takai K, Rampersaud A, Baranov A V 2018 APL Mater. 6 086104Google Scholar

    [14]

    Li M, Wang Z W, Teng Y, Zhao H Y, Li B W, Liu Y, Wang S X, Yang Z Z, Chen L C, Ma H A, Jia X P 2024 Diamond Relat. Mater. 141 110605Google Scholar

    [15]

    Wang W H, Fang C, Chen L C, Zhang Z F, Zhang Y W, Wang Q Q, Biao W, Yang X, Ren W, Jia X P 2024 Diamond Relat. Mater. 142 110863Google Scholar

    [16]

    Liu Y, Wang Z W, Teng Y, Li B W, Zhao H Y, Guo Q Y, Chen L C, Ma H A, Jia X P 2024 Int. J. Refract. Met. Hard Mater. 118 106488Google Scholar

    [17]

    Nie Y, Li S S, Hu Q, Wang J Z, Hu M H, Su T C, Huang G F, Li Z C, Li Y, Xiao H Y 2023 Opt. Mater. 137 113538Google Scholar

    [18]

    Catledge S A, Vohra Y K, Ladi R, Rai G 1996 Diamond Relat. Mater. 5 1159Google Scholar

    [19]

    肖宏宇, 李勇, 田昌海, 张蔚曦, 王强, 肖政国, 王应, 金慧, 鲍志刚, 周振翔 2024 人工晶体学报 53 959Google Scholar

    Xiao H Y, Li Y, Tian C H, Zhang W X, Wang Q, Xiao Z G, Wang Y, Jin H, Bao Z G, Zhou Z X 2024 J. Synth. Cryst. 53 959Google Scholar

    [20]

    Capelli M, Heffernan A H, Ohshim T, Abe H, Jeske J, Hope A, Greentree A D, Reineck P, Gibson B C 2019 Carbon 143 714Google Scholar

    [21]

    Sedova V, Martyanov A, Savin S, Bolshakov A, Bushuev E, Khomich A, Kudryavtsev O, Krivobok V, Nikolaev S, Ralchenko V 2018 Diamond Relat. Mater. 90 47Google Scholar

    [22]

    Glinka Y D, Lin K W, Chang H C, Lin S H 1999 J. Phys. Chem. B 103 4251Google Scholar

    [23]

    Moussa J E, Marom N, Sai N, Chelikowsky J R 2012 Phys. Rev. Lett. 108 226404Google Scholar

  • 图 1  金刚石单晶的生长组装示意图. ①叶蜡石块; ②白云石衬管; ③触媒合金; ④金刚石单晶; ⑤导电钢帽; ⑥石墨加热管; ⑦碳素源; ⑧晶体生长容器; ⑨晶种; ⑩导电紫铜片

    Figure 1.  Sample assembly to treat synthesis diamond single crystals. ① Synthetic block of pyrophyllite; ② dolomite lining tube; ③ catalyst alloy; ④ diamond single crystal; ⑤ conductive steel cap; ⑥ graphite heating tube; ⑦ carbon source; ⑧ crystal growth container; ⑨ seed crystals; ⑩ conductive copper sheet.

    图 2  5.8 GPa下不同Li3N添加质量含量金刚石单晶的光学显微照片 (a) 0.25% Li3N; (b) 0.35% Li3N; (c) 0.45% Li3N; (d) 0.55% Li3N

    Figure 2.  Optical micrographs of diamond single crystals with different weight percent Li3N addition ratios under 5.8 GPa: (a) 0.25% Li3N; (b) 0.35% Li3N; (c) 0.45% Li3N; (d) 0.55% Li3N.

    图 3  Li3N添加金刚石单晶生长“V形区”上移示意图. (a)低Li3N添加的“V形区”; (b)高Li3N添加的“V形区”

    Figure 3.  Schematic diagram of the upward movement of the “V-shaped region” with Li3N doped diamond growth. (a) V-shaped region with low Li3N addition; (b) V-shaped region with high Li3N addition

    图 4  不同压力及Li3N添加比例下生长金刚石单晶的光学显微照片 (a) 5.8 GPa, 0.60% Li3N; (b) 5.6 GPa, 0.07% Li3N; (c) 5.6 GPa, 0.08% Li3N

    Figure 4.  Optical micrographs of diamond single crystals grown under different pressures and Li3N addition ratios: (a) Under 5.8 GPa, for 0.60% Li3N; (b) under 5.6 GPa, for 0.07% Li3N; (c) under 5.6 GPa, for 0.08% Li3N.

    图 5  不同Li3N添加比例金刚石单晶的微区红外光谱 (a) S6; (b) S1; (c) S2; (d) S3; (e) S4

    Figure 5.  FTIR spectra of diamond crystals synthesized under different Li3N addition ratios: (a) S6; (b) S1; (c) S2; (d) S3; (e) S4.

    图 6  不同Li3N添加比例金刚石单晶的Raman光谱测试结果 (a) S1; (b) S2; (c) S3; (d) S4

    Figure 6.  Raman spectra of diamond crystals synthesized under different Li3N addition ratios: (a) S1; (b) S2; (c) S3; (d) S4.

    图 7  不同Li3N添加比例金刚石单晶的PL光谱 (a) S1; (b) S2; (c) S3; (d) S4

    Figure 7.  PL spectra of diamond crystals synthesized under different Li3N addition ratios: (a) S1; (b) S2; (c) S3; (d) S4.

    表 1  Li3N添加金刚石单晶的生长条件及晶体品质特征

    Table 1.  Growth conditions and crystal quality of Li3N doped diamond single crystals.

    样品 压力/GPa 温度/℃ Li3N添加比例/% 生长速度/(mg·h–1) 晶体品质
    S1 5.8 1300 0.25 1.85 六面体, 无包裹体及表面凹坑 (图2(a))
    S2 5.8 1300 0.35 1.65 六-八面体, 少量包裹体, 无表面凹坑 (图2(b))
    S3 5.8 1300 0.45 1.36 近八面体, 无包裹体及表面凹坑 (图2(c))
    S4 5.8 1300 0.55 0.89 八面体, 无包裹体及表面凹坑 (图2(d))
    S5 5.8 1300 0.60 0.27 八面体, 表面存在沟壑状缺陷 (图4(a))
    S6 5.6 1300 0.07 0.15 六八面体, 晶种附近较多包裹体 (图4(b))
    S7 5.6 1300 0.08 0.09 六面体, 边缘出现较大尺寸孪晶 (图4(c))
    DownLoad: CSV

    表 2  Li3N添加金刚石单晶的氮含量

    Table 2.  Nitrogen contents of Li3N doped diamond single crystals.

    序号 Li3N添加质量
    含量/%
    C心N含量
    NC/×10–6
    金刚石
    样品
    a 0.07 356 S6
    b 0.25 493 S1
    c 0.35 616 S2
    d 0.45 770 S3
    e 0.55 892 S4
    DownLoad: CSV

    表 3  Li3N添加金刚石单晶的内应力σh

    Table 3.  Internal stress of Li3N doped diamond single crystals.

    序号 拉曼峰值/cm–1 Δγ/cm–1 内应力σh/MPa
    a 1330.92 1.08 375
    b 1330.81 1.19 413
    c 1330.77 1.23 427
    e 1330.50 1.50 521
    DownLoad: CSV
    Baidu
  • [1]

    Bovenkerk H P, Bundy F P, Hall H T, Strong H M, Wentorf Jr R H 1959 Nature 184 1094Google Scholar

    [2]

    Li Y, Liao J H, Wang Y, She Y C, Xiao Z G, An J 2020 Opt. Mater. 101 109735Google Scholar

    [3]

    Ma Y M, Eremets M, Oganov A R, Xie Y, Trojan, Medvedev S 2009 Nature 458 182Google Scholar

    [4]

    Liu X B, Chen X, Singh D J, Stern R A, Wu J S, Petitgirard S, Bina C R, Jacobsen S D 2019 Proc. Natl. Acad. Sci. U. S A. 116 7703Google Scholar

    [5]

    Li Y, Chen X Z, Ran M W, She Y C, Xiao Z G, Hu M H, Wang Y, An J 2022 Chin. Phys. B 31 046107Google Scholar

    [6]

    Borzdov Y, Pal’yanov Y, Kupriyanov I, Gusev V, Khokhryakov A, Sokol A, Efremov A 2002 Diamond Relat. Mater. 11 1863Google Scholar

    [7]

    Ralchenko V, Sedov V, Martyanov A, Voronov V, Savin S, Khomich A 2022 Carbon 190 10Google Scholar

    [8]

    肖宏宇, 秦玉琨, 刘利娜, 鲍志刚, 唐春娟, 孙瑞瑞, 张永胜, 李尚升, 贾晓鹏 2018 67 140702Google Scholar

    Xiao H Y, Qin Y K, Liu L N, Bao Z G, Tang C J, Sun R R, Zhang Y S, Li S S, Jia X P 2018 Acta Phys. Sin. 67 140702Google Scholar

    [9]

    肖宏宇, 李勇, 鲍志刚, 佘彦超, 王应, 李尚升 2023 72 020701Google Scholar

    Xiao H Y, Li Y, Bao Z G, She Y C, Wang Y, Li S S 2023 Acta Phys. Sin. 72 020701Google Scholar

    [10]

    Li Y, Wang S, Xiao H Y, Wang Q, Xiao Z G, She Y C, Wang Y 2024 CrystEngComm 26 2190Google Scholar

    [11]

    Yelisseyev A P, Zhimulev E I, Karpovich Z A, Chepurov A A, Sonin V M, Chepurov A I 2022 CrystEngComm 24 4408Google Scholar

    [12]

    Razgulov A A, Lyapin S G, Novikov A P, Ekimov E A 2021 Diamond Relat. Mater. 116 108379Google Scholar

    [13]

    Bogdanov K V, Zhukovskaya M V, Osipov V Y, Ushakova E V, Baranov M A, Takai K, Rampersaud A, Baranov A V 2018 APL Mater. 6 086104Google Scholar

    [14]

    Li M, Wang Z W, Teng Y, Zhao H Y, Li B W, Liu Y, Wang S X, Yang Z Z, Chen L C, Ma H A, Jia X P 2024 Diamond Relat. Mater. 141 110605Google Scholar

    [15]

    Wang W H, Fang C, Chen L C, Zhang Z F, Zhang Y W, Wang Q Q, Biao W, Yang X, Ren W, Jia X P 2024 Diamond Relat. Mater. 142 110863Google Scholar

    [16]

    Liu Y, Wang Z W, Teng Y, Li B W, Zhao H Y, Guo Q Y, Chen L C, Ma H A, Jia X P 2024 Int. J. Refract. Met. Hard Mater. 118 106488Google Scholar

    [17]

    Nie Y, Li S S, Hu Q, Wang J Z, Hu M H, Su T C, Huang G F, Li Z C, Li Y, Xiao H Y 2023 Opt. Mater. 137 113538Google Scholar

    [18]

    Catledge S A, Vohra Y K, Ladi R, Rai G 1996 Diamond Relat. Mater. 5 1159Google Scholar

    [19]

    肖宏宇, 李勇, 田昌海, 张蔚曦, 王强, 肖政国, 王应, 金慧, 鲍志刚, 周振翔 2024 人工晶体学报 53 959Google Scholar

    Xiao H Y, Li Y, Tian C H, Zhang W X, Wang Q, Xiao Z G, Wang Y, Jin H, Bao Z G, Zhou Z X 2024 J. Synth. Cryst. 53 959Google Scholar

    [20]

    Capelli M, Heffernan A H, Ohshim T, Abe H, Jeske J, Hope A, Greentree A D, Reineck P, Gibson B C 2019 Carbon 143 714Google Scholar

    [21]

    Sedova V, Martyanov A, Savin S, Bolshakov A, Bushuev E, Khomich A, Kudryavtsev O, Krivobok V, Nikolaev S, Ralchenko V 2018 Diamond Relat. Mater. 90 47Google Scholar

    [22]

    Glinka Y D, Lin K W, Chang H C, Lin S H 1999 J. Phys. Chem. B 103 4251Google Scholar

    [23]

    Moussa J E, Marom N, Sai N, Chelikowsky J R 2012 Phys. Rev. Lett. 108 226404Google Scholar

  • [1] WANG Shuai, KANG Ruwei, LI Yong, XIAO Hongyu, WANG Ying, RAN Maowu, MA Hongan. Influence of B2S3 additive on [111]-oriented diamond crystal synthesized under high pressure condition. Acta Physica Sinica, 2025, 74(8): 080701. doi: 10.7498/aps.74.20250028
    [2] Tian Yi, Du Ming-Hao, Zhang Jia-Wei, He Duan-Wei. Research on pressure transmission and sealing performance of pyrophyllite in a cubic large chamber static high-pressure device. Acta Physica Sinica, 2024, 73(1): 019101. doi: 10.7498/aps.73.20231087
    [3] Xiao Hong-Yu, Li Yong, Bao Zhi-Gang, She Yan-Chao, Wang Ying, Li Shang-Sheng. Effect of catalyst composition on growth and crack defects of large diamond single crystal under high temperature and pressure. Acta Physica Sinica, 2023, 72(2): 020701. doi: 10.7498/aps.72.20221841
    [4] You Yue, Li Shang-Sheng, Su Tai-Chao, Hu Mei-Hua, Hu Qiang, Wang Jun-Zhuo, Gao Guang-Jin, Guo Ming-Ming, Nie Yuan. Research progress of large diamond single crystals under high pressure and high temperature. Acta Physica Sinica, 2020, 69(23): 238101. doi: 10.7498/aps.69.20200692
    [5] Qin Yu-Kun, Xiao Hong-Yu, Liu Li-Na, Sun Rui-Rui, Hu Qiu-Bo, Bao Zhi-Gang, Zhang Yong-Sheng, Li Shang-Sheng, Jia Xiao-Peng. Effects of seed crystal size on growth of gem-diamond single crystal. Acta Physica Sinica, 2019, 68(2): 020701. doi: 10.7498/aps.68.20181855
    [6] Li Yong, Wang Ying, Li Shang-Sheng, Li Zong-Bao, Luo Kai-Wu, Ran Mao-Wu, Song Mou-Sheng. Synthesis of diamond co-doped with B and S under high pressure and high temperature and electrical properties of the synthesized diamond. Acta Physica Sinica, 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [7] Xiao Hong-Yu, Qin Yu-Kun, Liu Li-Na, Bao Zhi-Gang, Tang Chun-Juan, Sun Rui-Rui, Zhang Yong-Sheng, Li Shang-Sheng, Jia Xiao-Peng. Effects of cooling process on qualities of Gem-diamond single crystals. Acta Physica Sinica, 2018, 67(14): 140702. doi: 10.7498/aps.67.20180207
    [8] Wang Jun-Zhuo, Li Shang-Sheng, Su Tai-Chao, Hu Mei-Hua, Hu Qiang, Wu Yu-Min, Wang Jian-Kang, Han Fei, Yu Kun-Peng, Gao Guang-Jin, Guo Ming-Ming, Jia Xiao-Peng, Ma Hong-An, Xiao Hong-Yu. Shape controlled growth for type Ib large diamond crystals. Acta Physica Sinica, 2018, 67(16): 168101. doi: 10.7498/aps.67.20180356
    [9] Xiao Hong-Yu, Qin Yu-Kun, Sui Yong-Ming, Liang Zhong-Zhu, Liu Li-Na, Zhang Yong-Sheng. Effects of cavity size on the growth of hexahedral type-Ib gem-diamond single crystals. Acta Physica Sinica, 2016, 65(7): 070705. doi: 10.7498/aps.65.070705
    [10] Xiao Hong-Yu, Liu Li-Na, Qin Yu-Kun, Zhang Dong-Mei, Zhang Yong-Sheng, Sui Yong-Ming, Liang Zhong-Zhu. Syntheses of B2O3-doped gem-diamond single crystals. Acta Physica Sinica, 2016, 65(5): 050701. doi: 10.7498/aps.65.050701
    [11] Li Yong, Li Zong-Bao, Song Mou-Sheng, Wang Ying, Jia Xiao-Peng, Ma Hong-An. Synthesis and electrical properties study of Ib type diamond single crystal co-doped with boron and hydrogen under HPHT conditions. Acta Physica Sinica, 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [12] Fang Chao, Jia Xiao-Peng, Chen Ning, Zhou Zhen-Xiang, Li Ya-Dong, Li Yong, Ma Hong-An. Crystal growth and characterization of hydrogen-doped single diamond with Fe(C5H5)2 additive. Acta Physica Sinica, 2015, 64(12): 128101. doi: 10.7498/aps.64.128101
    [13] Zhang He, Li Shang-Sheng, Su Tai-Chao, Hu Mei-Hua, Zhou You-Mo, Fan Hao-Tian, Gong Chun-Sheng, Jia Xiao-Peng, Ma Hong-An, Xiao Hong-Yu. Effect of temperature on the (100) surface features of type Ib and type IIa large single crystal diamonds. Acta Physica Sinica, 2015, 64(19): 198103. doi: 10.7498/aps.64.198103
    [14] Fang Chao, Jia Xiao-Peng, Yan Bing-Min, Chen Ning, Li Ya-Dong, Chen Liang-Chao, Guo Long-Suo, Ma Hong-An. Effects of nitrogen and hydrogen co-doped on {100}-oriented single diamond under high temperature and high pressure. Acta Physica Sinica, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [15] Zhou Zhen-Xiang, Jia Xiao-Peng, Li Yong, Yan Bing-Min, Wang Fang-Biao, Fang Chao, Chen Ning, Li Ya-Dong, Ma Hong-An. Effect of additive zinc on larger diamond crystal growth. Acta Physica Sinica, 2014, 63(24): 248104. doi: 10.7498/aps.63.248104
    [16] Zhang Song-Bo, Wang Fang-Biao, Li Fa-Ming, Wen Ge-Hui. HPHT synthesis and magnetic property of -Fe2O3@C core-shell nanorods. Acta Physica Sinica, 2014, 63(10): 108101. doi: 10.7498/aps.63.108101
    [17] Xiao Hong-Yu, Li Shang-Sheng, Qin Yu-Kun, Liang Zhong-Zhu, Zhang Yong-Sheng, Zhang Dong-Mei, Zhang Yi-Shun. Studies on synthesis of boron-doped Gem-diamond single crystals under high temperature and high presure. Acta Physica Sinica, 2014, 63(19): 198101. doi: 10.7498/aps.63.198101
    [18] Xiao Hong-Yu, Su Jian-Feng, Zhang Yong-Sheng, Bao Zhi-Gang. Synthesis and characterization of the Gem-diamond by temperature gradient method. Acta Physica Sinica, 2012, 61(24): 248101. doi: 10.7498/aps.61.248101
    [19] Qin Jie-Ming, Ying Zhang, Cao Jian-Ming, Tian Li-Fei. Synthesis and characterization of the grinding compoundlevel diamond by pure Fe catalyst. Acta Physica Sinica, 2011, 60(5): 058102. doi: 10.7498/aps.60.058102
    [20] Qin Jie-Ming, Wang Hao, Zeng Fan-Ming, Li Jian-Li, Wan Yu-Chun, Liu Jing-He. Synthesis of MgxZn1-xO under high pressure and high temperature. Acta Physica Sinica, 2010, 59(12): 8910-8914. doi: 10.7498/aps.59.8910
Metrics
  • Abstract views:  489
  • PDF Downloads:  22
  • Cited By: 0
Publishing process
  • Received Date:  25 December 2024
  • Accepted Date:  16 January 2025
  • Available Online:  09 February 2025
  • Published Online:  05 April 2025

/

返回文章
返回
Baidu
map