-
Temperature is one of the important parameters to measure the combustion efficiency. The measurement of temperature is of great significance for saving energy and reducing emission in industrial combustion process and diagnosing the engine state. The tunable diode laser absorption spectroscopy is a non-invasive measurement technology with strong environmental adaptability for fast, in-situ detection. Based on the three absorption lines of H2O at 7185.6 cm–1, 6807.8 cm–1 and 7444.35/37 cm–1, the wavelength modulated spectrum absorption model is established and laboratory-calibrated; using the background-subtracting WMS-2f/1f method and the best fit method, the temperature is measured. The outlet temperature of the single-head combustion chamber is accurately realized. The outlet temperature of the single-sector combustion chamber is also accurately measured. The measurement is verified in a pressure range of 3.39-10.58 atm and a temperature range of 958-1512 K. The time resolution of the measurement system is less than 1 ms, and the measurement error is less than 5.68%, thus verifying the practicality of the measurement method and the stability of the measurement system.
-
Keywords:
- absorbance spectroscopy /
- wavelength modulation spectroscopy /
- high temperature and pressure /
- combustion flow field
[1] Goldenstein C S, Spearrin R M, Schultz I A, Jeffries J B, Hanson R K 2014 Meas. Sci. Technol. 25 055101Google Scholar
[2] Chao X, Jeffries J B, Hanson R K 2011 Proc. Combust. Inst. 33 725Google Scholar
[3] Chao X, Jeffries J B, Hanson R K 2012 Appl. Phys. B 110 359
[4] Ortwein P, Woiwode W, Fleck S, Eberhard M, Kolb T, Wagner S, Gisi M, Ebert V 2010 Exp. Fluids 49 961Google Scholar
[5] Sun K, Sur R, Chao X, Jeffries J B, Hanson R K, Pummill R J, Whitty K J 2013 Proc. Combust. Inst. 34 3593Google Scholar
[6] Caswell A W, Kraetschmer T, Rein K, Sanders S T, Roy S, Shouse D T, Gord J R 2010 Appl. Opt. 49 4963Google Scholar
[7] Li H, Wehe S D, McManus K R 2011 Proc. Combust. Inst. 33 717Google Scholar
[8] Li H, Zhou X, Jeffries J B, Hanson R K 2007 Proc. Combust. Inst. 31 3215Google Scholar
[9] Liu X, Jeffries J B, Hanson R K, Hinckley K M, Woodmansee M A 2005 Appl. Phys. B 82 469
[10] Witzel O, Klein A, Meffert C, Schulz C, Kaiser S A, Ebert V 2015 Proc. Combust. Inst. 35 3653Google Scholar
[11] Witzel O, Klein A, Wagner S, Meffert C, Schulz C, Ebert V 2012 Appl. Phys. B 109 521Google Scholar
[12] Wright P, Terzija N, Davidson J L, Garcia-Castillo S, Garcia-Stewart C, Pegrum S, Colbourne S, Turner P, Crossley S D, Litt T 2010 Chem. Eng. J. 158 2Google Scholar
[13] Goldenstein C S, Schultz I A, Spearrin R M, Jeffries J B, Hanson R K 2014 Appl. Phys. B 116 717Google Scholar
[14] Goldenstein C S, Strand C L, Schultz I A, Sun K, Jeffries J B, Hanson R K 2014 Appl. Opt. 53 356Google Scholar
[15] Schultz I A, Goldenstein C S, Mitchell Spearrin R, Jeffries J B, Hanson R K, Rockwell R D, Goyne C P 2014 J. Propul. Power 30 1595Google Scholar
[16] Spearrin R M, Goldenstein C S, Schultz I A, Jeffries J B, Hanson R K 2014 Appl. Phys. B 117 689Google Scholar
[17] Goldenstein C S, Almodóvar C A, Jeffries J B, Hanson R K, Brophy C M 2014 Meas. Sci. Technol. 25 174
[18] Ma L, Cai W, Caswell A W, Kraetschmer T, Gord J R 2009 Opt. Express 17 8602Google Scholar
[19] Strand C L 2014 Ph. D. Dissertation (California: Stanford University)
[20] Goldenstein C S 2014 Ph. D. Dissertation (California: Stanford University)
[21] Hui A K, Armstrong B H, Wray A A 1978 J. Quant. Spectrosc. Radiat. Transfer 19 509Google Scholar
[22] 李宁, 翁春生 2011 60 070701
Li N, Weng C S 2011 Acta Phys. Sin. 60 070701
[23] 蓝丽娟, 丁艳军, 贾军伟, 杜艳君, 彭志敏 2014 63 083301Google Scholar
Lan L J, Ding Y J, Jia J W, Du Y J, Peng Z M 2014 Acta Phys. Sin. 63 083301Google Scholar
-
表 1 三条吸收线谱线参数
Table 1. Spectroscopic parameters of three absorption lines.
${\upsilon _0}$/cm–1 $S({T_0})$@296 K/cm–2·atm–1 E''/cm–1 γair0/cm–1·atm–1 γself/cm–1·atm–1 7185.60 1.91 × 10–2 1045.06 0.041 0.198 6807.83 6.03 × 10–6 3319.45 0.098 0.183 7444.35/37 1.10 × 10–3 1774/1806 0.019/0.0153 0.2/0.23 表 2 不同工况参数
Table 2. Parameters of different operating conditions
State Pressure/atm Flow/kg·s–1 Average temperature/K 1 3.49 0.511 958 2 7.04 0.997 1420 3 10.58 1.48 1512 表 3 测量结果
Table 3. Measurement result.
State & illustrate State 1 State 2 State 3 First group Average temperature/K 975.41 1481.29 1596.33 Absolute error/K 17.41 61.29 84.33 Relative error/% 1.82 4.32 5.58 Second group Average temperature/K 980.57 1473.66 1595.77 Absolute error/K 22.57 53.66 83.77 Relative error/% 2.36 3.78 5.54 Third group Average temperature/K 982.91 1481.46 1601.50 Absolute error/K 24.91 61.46 89.50 Relative error/% 2.60 4.33 5.92 Total Average temperature/K 979.63 1478.80 1597.87 Absolute error/K 21.63 58.80 85.87 Relative error/% 2.26 4.14 5.68 -
[1] Goldenstein C S, Spearrin R M, Schultz I A, Jeffries J B, Hanson R K 2014 Meas. Sci. Technol. 25 055101Google Scholar
[2] Chao X, Jeffries J B, Hanson R K 2011 Proc. Combust. Inst. 33 725Google Scholar
[3] Chao X, Jeffries J B, Hanson R K 2012 Appl. Phys. B 110 359
[4] Ortwein P, Woiwode W, Fleck S, Eberhard M, Kolb T, Wagner S, Gisi M, Ebert V 2010 Exp. Fluids 49 961Google Scholar
[5] Sun K, Sur R, Chao X, Jeffries J B, Hanson R K, Pummill R J, Whitty K J 2013 Proc. Combust. Inst. 34 3593Google Scholar
[6] Caswell A W, Kraetschmer T, Rein K, Sanders S T, Roy S, Shouse D T, Gord J R 2010 Appl. Opt. 49 4963Google Scholar
[7] Li H, Wehe S D, McManus K R 2011 Proc. Combust. Inst. 33 717Google Scholar
[8] Li H, Zhou X, Jeffries J B, Hanson R K 2007 Proc. Combust. Inst. 31 3215Google Scholar
[9] Liu X, Jeffries J B, Hanson R K, Hinckley K M, Woodmansee M A 2005 Appl. Phys. B 82 469
[10] Witzel O, Klein A, Meffert C, Schulz C, Kaiser S A, Ebert V 2015 Proc. Combust. Inst. 35 3653Google Scholar
[11] Witzel O, Klein A, Wagner S, Meffert C, Schulz C, Ebert V 2012 Appl. Phys. B 109 521Google Scholar
[12] Wright P, Terzija N, Davidson J L, Garcia-Castillo S, Garcia-Stewart C, Pegrum S, Colbourne S, Turner P, Crossley S D, Litt T 2010 Chem. Eng. J. 158 2Google Scholar
[13] Goldenstein C S, Schultz I A, Spearrin R M, Jeffries J B, Hanson R K 2014 Appl. Phys. B 116 717Google Scholar
[14] Goldenstein C S, Strand C L, Schultz I A, Sun K, Jeffries J B, Hanson R K 2014 Appl. Opt. 53 356Google Scholar
[15] Schultz I A, Goldenstein C S, Mitchell Spearrin R, Jeffries J B, Hanson R K, Rockwell R D, Goyne C P 2014 J. Propul. Power 30 1595Google Scholar
[16] Spearrin R M, Goldenstein C S, Schultz I A, Jeffries J B, Hanson R K 2014 Appl. Phys. B 117 689Google Scholar
[17] Goldenstein C S, Almodóvar C A, Jeffries J B, Hanson R K, Brophy C M 2014 Meas. Sci. Technol. 25 174
[18] Ma L, Cai W, Caswell A W, Kraetschmer T, Gord J R 2009 Opt. Express 17 8602Google Scholar
[19] Strand C L 2014 Ph. D. Dissertation (California: Stanford University)
[20] Goldenstein C S 2014 Ph. D. Dissertation (California: Stanford University)
[21] Hui A K, Armstrong B H, Wray A A 1978 J. Quant. Spectrosc. Radiat. Transfer 19 509Google Scholar
[22] 李宁, 翁春生 2011 60 070701
Li N, Weng C S 2011 Acta Phys. Sin. 60 070701
[23] 蓝丽娟, 丁艳军, 贾军伟, 杜艳君, 彭志敏 2014 63 083301Google Scholar
Lan L J, Ding Y J, Jia J W, Du Y J, Peng Z M 2014 Acta Phys. Sin. 63 083301Google Scholar
Catalog
Metrics
- Abstract views: 7981
- PDF Downloads: 95
- Cited By: 0