-
在高压实验科学中, 各类宝石压腔是最为常见的高压设备之一, 其样品腔中压力的精确标定是实验的关键. 目前, 人们主要通过加入红宝石等压标物质来进行定压, 但压标物质的加入会增加实验的装样难度, 改变样品腔中的物理化学环境, 甚至直接与实验样品发生反应, 从而对实验结果产生影响. 在0–6.3 GPa和300–573 K下, 利用共聚焦拉曼显微镜, 根据白宝石压砧砧面的ν12 拉曼频移与温度和压力的变化关系, 建立了一套适用于高温高压水热体系的无压标白宝石压腔系统. 实验结果表明: 白宝石砧面的ν12 峰随着压力的升高发生线性蓝移, 而随着温度升高则发生线性红移, 且温度和压力对拉曼频移的影响存在耦合效应. 利用本实验结果, 可在高温高压下根据白宝石砧面的拉曼频移计算出样品腔的压力P=(Δλ-0.01913×ΔT)/(1.9158-0.00105×ΔT), 在物理学、材料学和地球科学等领域具有重要应用.Gem anvil cell is on important tool in high pressure experimental research, and the key of its application is the accurate calibration of the pressure in sample chamber. To date, the pressure has been routinely calibrated by the extra gauge such as ruby. This may increase the difficulty in building a setup and changing the chemical environment, even chemical reaction happens with the sample, thereby degrading the experimental results. In this study, using the synthesized pale sapphire and the heatable Zha-Bassett type cell, the relationships between Raman shift of sapphire-anvil interface and the pressure, and also temperature in chamber are investigated by the confocal Raman microscope at 0-6.3 GPa and 300-573 K, which is used to establish a non-gauge sapphire anvil cell system. The result shows that the pressure induced Raman shift of sapphire anvil at room temperature is 1.6443 cm-1/GPa and the temperature induced shift at room pressure is -0.0198 cm-1/K. We fit the experimental data at simultaneous high temperature and high pressure (HTHP) and find that: ∂ν12/∂T=-0.01913-0.00105×P, ∂ν12/∂P=1.9158-0.00105×T. The effect between the pressure and temperature can be described by ∂ν12/∂P∂T=-0.00105. After this calibration: P=(Δλ-0.01913×ΔT)/(1.9158-0.00105×ΔT), the pressure in the sample chamber can be calculated by the Raman shift of the interface of anvil cell in the HTHP experiment, which can be directly used in hydro-thermal reaction system and has great importance in physics, material science and geoscience.
-
Keywords:
- sapphire anvil cell /
- pressure calibration /
- Raman shift /
- high temperature and high pressure
[1] Bassett W 2009 High Pressure Res. 29 163
[2] Hu J Z, Tang R M, Xu J A 2005 Acta Phys. Sin. 29 1351 (in Chinese) [胡静竹, 唐汝明, 徐济安 2005 29 1351]
[3] Piermarini G 2008 Static Compression of Energetic Materials (Berlin: Springer) p7
[4] Decker D L, Bassett W A, Merrill L, Hall H T, Barnett J D 1972 J. Phys. Chem. Ref. Data 1 773
[5] Syassen K 2008 High Pressure Res. 28 75
[6] Gao R, Li H P 2012 High Pressure Res. 32 176
[7] Baonza V G, Taravillo M, Arencibia A, Caceres M, Nν12úñez J 2003 J. Raman Spectrosc. 34 264
[8] Qu Q M, Zheng H F 2007 Chin. J. High Pressure Phys. 21 332 (in Chinese) [瞿清明, 郑海飞 2007 高压 21 332]
[9] Fu Z Y, Liang P, Dong Q M, Shu H B, Xing S, Shen T, Tai B 2015 Acta Phys. Sin. 64 016102 (in Chinese) [傅重源, 梁培, 董前民, 舒海波, 邢淞, 沈涛, 邰博 2015 64 016102]
[10] Zhang R, Hu S 2004 The J. Supercrit. Fluid 29 185
[11] Yuan R L, Shi E W, Xia C T, Wang B G, Zhong W Z 1996 Acta Phys. Sin. 45 2082 (in Chinese) [元如林, 施尔畏, 夏长泰, 王步国, 仲维卓 1996 45 2082]
[12] Zheng H F 2014 Experimental Techniques of DAC for High Temperature and Pressure Studies and Its Applications (Beijing: Science Press) p172 (in Chinese) [郑海飞 2014 金刚石压腔高温高压实验技术及其应用 (北京: 科学出版社) 第172页]
[13] Richet P, Gillet P, Pierre A, Bouhifd M A, Daniel I, Fiquet G 1993 J. Appl. Phys. 74 5451
[14] Xu J A, Huang E, Lin J F, Xu L Y 1995 Am. Mineral. 80 1157
[15] Zha C S, Krasnicki S, Meng Y F, Yan C S, Lai J, Liang Q, Mao H K, Hemley R J 2009 High Pressure Res. 29 317
[16] Klotz S, Chervin J C, Munsch P, Le Marchand G 2009 J. Phys. D: Appl. Phys. 42 075413
[17] Mao H K, Xu J A, Bell P 1986 J. Geophys. Res. 91 4673
[18] Iishi K 1978 Phys. Chem. Miner. 3 1
[19] Porto S, Krishnan R 1967 J. Chem. Phys. 47 1009
[20] Noguchi N, Abduriyim A, Shimizu I, Kamegata N, Odake S, Kagi H 2013 J. Raman. Spectrosc. 44 147
[21] Schmidt C, Steele-MacInnis M, Watenphul A, Wilke M 2013 Am. Mineral. 98 6431
[22] Datchi F, Dewaele A, Loubeyre P, Letoullec R, Le Godec Y, Canny B 2007 High Pressure Res. 27 447
-
[1] Bassett W 2009 High Pressure Res. 29 163
[2] Hu J Z, Tang R M, Xu J A 2005 Acta Phys. Sin. 29 1351 (in Chinese) [胡静竹, 唐汝明, 徐济安 2005 29 1351]
[3] Piermarini G 2008 Static Compression of Energetic Materials (Berlin: Springer) p7
[4] Decker D L, Bassett W A, Merrill L, Hall H T, Barnett J D 1972 J. Phys. Chem. Ref. Data 1 773
[5] Syassen K 2008 High Pressure Res. 28 75
[6] Gao R, Li H P 2012 High Pressure Res. 32 176
[7] Baonza V G, Taravillo M, Arencibia A, Caceres M, Nν12úñez J 2003 J. Raman Spectrosc. 34 264
[8] Qu Q M, Zheng H F 2007 Chin. J. High Pressure Phys. 21 332 (in Chinese) [瞿清明, 郑海飞 2007 高压 21 332]
[9] Fu Z Y, Liang P, Dong Q M, Shu H B, Xing S, Shen T, Tai B 2015 Acta Phys. Sin. 64 016102 (in Chinese) [傅重源, 梁培, 董前民, 舒海波, 邢淞, 沈涛, 邰博 2015 64 016102]
[10] Zhang R, Hu S 2004 The J. Supercrit. Fluid 29 185
[11] Yuan R L, Shi E W, Xia C T, Wang B G, Zhong W Z 1996 Acta Phys. Sin. 45 2082 (in Chinese) [元如林, 施尔畏, 夏长泰, 王步国, 仲维卓 1996 45 2082]
[12] Zheng H F 2014 Experimental Techniques of DAC for High Temperature and Pressure Studies and Its Applications (Beijing: Science Press) p172 (in Chinese) [郑海飞 2014 金刚石压腔高温高压实验技术及其应用 (北京: 科学出版社) 第172页]
[13] Richet P, Gillet P, Pierre A, Bouhifd M A, Daniel I, Fiquet G 1993 J. Appl. Phys. 74 5451
[14] Xu J A, Huang E, Lin J F, Xu L Y 1995 Am. Mineral. 80 1157
[15] Zha C S, Krasnicki S, Meng Y F, Yan C S, Lai J, Liang Q, Mao H K, Hemley R J 2009 High Pressure Res. 29 317
[16] Klotz S, Chervin J C, Munsch P, Le Marchand G 2009 J. Phys. D: Appl. Phys. 42 075413
[17] Mao H K, Xu J A, Bell P 1986 J. Geophys. Res. 91 4673
[18] Iishi K 1978 Phys. Chem. Miner. 3 1
[19] Porto S, Krishnan R 1967 J. Chem. Phys. 47 1009
[20] Noguchi N, Abduriyim A, Shimizu I, Kamegata N, Odake S, Kagi H 2013 J. Raman. Spectrosc. 44 147
[21] Schmidt C, Steele-MacInnis M, Watenphul A, Wilke M 2013 Am. Mineral. 98 6431
[22] Datchi F, Dewaele A, Loubeyre P, Letoullec R, Le Godec Y, Canny B 2007 High Pressure Res. 27 447
计量
- 文章访问数: 6811
- PDF下载量: 215
- 被引次数: 0